基于经验模态分解的美国股票价格指数1791-2015年历史分析

IF 0.8 4区 经济学 Q3 ECONOMICS Economics-The Open Access Open-Assessment E-Journal Pub Date : 2016-02-24 DOI:10.7910/DVN/FZUQDM
A. Tiwari, A. B. Dar, Niyati Bhanja, Rangan Gupta
{"title":"基于经验模态分解的美国股票价格指数1791-2015年历史分析","authors":"A. Tiwari, A. B. Dar, Niyati Bhanja, Rangan Gupta","doi":"10.7910/DVN/FZUQDM","DOIUrl":null,"url":null,"abstract":"In this paper, the dynamics of Standard and Poor's 500 (S&P 500) stock price index is analysed within a time-frequency framework over a monthly period 1791:08-2015:05. Using the Empirical Mode Decomposition technique, the S&P 500 stock price index is divided into different frequencies known as intrinsic mode functions (IMFs) and one residual. The IMFs and the residual are then reconstructed into high frequency, low frequency and trend components using the hierarchical clustering method. Using different measures, it is shown that the low frequency and trend components of stock prices are relatively important drivers of the S&P 500 index. These results are also robust across various subsamples identified based on structural break tests. Therefore, US stock prices have been driven mostly by fundamental laws rooted in economic growth and longterm returns on investment.","PeriodicalId":53338,"journal":{"name":"Economics-The Open Access Open-Assessment E-Journal","volume":"10 1","pages":"1-15"},"PeriodicalIF":0.8000,"publicationDate":"2016-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Historical Analysis of the US Stock Price Index using Empirical Mode Decomposition over 1791-2015\",\"authors\":\"A. Tiwari, A. B. Dar, Niyati Bhanja, Rangan Gupta\",\"doi\":\"10.7910/DVN/FZUQDM\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the dynamics of Standard and Poor's 500 (S&P 500) stock price index is analysed within a time-frequency framework over a monthly period 1791:08-2015:05. Using the Empirical Mode Decomposition technique, the S&P 500 stock price index is divided into different frequencies known as intrinsic mode functions (IMFs) and one residual. The IMFs and the residual are then reconstructed into high frequency, low frequency and trend components using the hierarchical clustering method. Using different measures, it is shown that the low frequency and trend components of stock prices are relatively important drivers of the S&P 500 index. These results are also robust across various subsamples identified based on structural break tests. Therefore, US stock prices have been driven mostly by fundamental laws rooted in economic growth and longterm returns on investment.\",\"PeriodicalId\":53338,\"journal\":{\"name\":\"Economics-The Open Access Open-Assessment E-Journal\",\"volume\":\"10 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2016-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics-The Open Access Open-Assessment E-Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.7910/DVN/FZUQDM\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics-The Open Access Open-Assessment E-Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.7910/DVN/FZUQDM","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,标准普尔500 (S&P 500)股票价格指数在时间-频率框架内分析了1791:08-2015:05月期间的动态。使用经验模态分解技术,标准普尔500股票价格指数被分为不同的频率,称为本征模态函数(IMFs)和一个残差。然后使用分层聚类方法将imf和残差重构为高频、低频和趋势分量。使用不同的措施,它表明,股票价格的低频和趋势成分是标准普尔500指数的相对重要的驱动因素。这些结果在基于结构断裂试验确定的各种子样本中也具有鲁棒性。因此,美国股票价格主要是由植根于经济增长和长期投资回报的基本规律驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Historical Analysis of the US Stock Price Index using Empirical Mode Decomposition over 1791-2015
In this paper, the dynamics of Standard and Poor's 500 (S&P 500) stock price index is analysed within a time-frequency framework over a monthly period 1791:08-2015:05. Using the Empirical Mode Decomposition technique, the S&P 500 stock price index is divided into different frequencies known as intrinsic mode functions (IMFs) and one residual. The IMFs and the residual are then reconstructed into high frequency, low frequency and trend components using the hierarchical clustering method. Using different measures, it is shown that the low frequency and trend components of stock prices are relatively important drivers of the S&P 500 index. These results are also robust across various subsamples identified based on structural break tests. Therefore, US stock prices have been driven mostly by fundamental laws rooted in economic growth and longterm returns on investment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Economics-The Open Access Open-Assessment E-Journal
Economics-The Open Access Open-Assessment E-Journal Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
3.20
自引率
0.00%
发文量
15
审稿时长
30 weeks
期刊最新文献
The Effect of Micro-Credit on Rural Households’ Income in the Case of Sinana District, Bale Zone, Oromia National Regional State, Ethiopia Reinvestigating the U.S. Consumption Function: A Nonlinear Autoregressive Distributed Lags Approach Path Constitution: Building Organizational Resilience for Sustainable Performance Organizational Integration, Knowledge Management, and Sustainable Entrepreneurship for SMEs in Developing Economies Profit efficiency of banks in Colombia with undesirable output: a directional distance function approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1