{"title":"无源均匀线阵声纳基于WBRCB的宽带自适应波束形成研究","authors":"Ara Hyun, J. Ahn, I. Yang, Gwangtae Kim","doi":"10.7776/ASK.2019.38.2.145","DOIUrl":null,"url":null,"abstract":": Adaptive beamforming methods are known to suppress sidelobes and improve detection performance of weak signal by constructing weight vectors depending on the received signal itself. A standard adaptive beamforming like the MVDR (Minimum Variance Distortionless Response) is very sensitive to mismatches between weight vectors and actual signal steering vectors. Also, a large computational complexity for estimating a stable covariance matrix is required when wideband beamforming for a large-scale array is used. In this paper, we exploit the WBRCB (Wideband Robust Capon Beamforming) method for stable and robust wideband adaptive beamforming of a passive large uniform line array sonar. To improve robustness of adaptive beamforming performance in the presence of mismatches, we extract a optimum mismatch parameter. WBRCB with extracted mismatch parameter shows performance improvement in beamforming using synthetic and experimental passive sonar signals.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"38 1","pages":"145-153"},"PeriodicalIF":0.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on wideband adaptive beamforming based on WBRCB for passive uniform line array sonar\",\"authors\":\"Ara Hyun, J. Ahn, I. Yang, Gwangtae Kim\",\"doi\":\"10.7776/ASK.2019.38.2.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Adaptive beamforming methods are known to suppress sidelobes and improve detection performance of weak signal by constructing weight vectors depending on the received signal itself. A standard adaptive beamforming like the MVDR (Minimum Variance Distortionless Response) is very sensitive to mismatches between weight vectors and actual signal steering vectors. Also, a large computational complexity for estimating a stable covariance matrix is required when wideband beamforming for a large-scale array is used. In this paper, we exploit the WBRCB (Wideband Robust Capon Beamforming) method for stable and robust wideband adaptive beamforming of a passive large uniform line array sonar. To improve robustness of adaptive beamforming performance in the presence of mismatches, we extract a optimum mismatch parameter. WBRCB with extracted mismatch parameter shows performance improvement in beamforming using synthetic and experimental passive sonar signals.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":\"38 1\",\"pages\":\"145-153\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2019.38.2.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2019.38.2.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
A study on wideband adaptive beamforming based on WBRCB for passive uniform line array sonar
: Adaptive beamforming methods are known to suppress sidelobes and improve detection performance of weak signal by constructing weight vectors depending on the received signal itself. A standard adaptive beamforming like the MVDR (Minimum Variance Distortionless Response) is very sensitive to mismatches between weight vectors and actual signal steering vectors. Also, a large computational complexity for estimating a stable covariance matrix is required when wideband beamforming for a large-scale array is used. In this paper, we exploit the WBRCB (Wideband Robust Capon Beamforming) method for stable and robust wideband adaptive beamforming of a passive large uniform line array sonar. To improve robustness of adaptive beamforming performance in the presence of mismatches, we extract a optimum mismatch parameter. WBRCB with extracted mismatch parameter shows performance improvement in beamforming using synthetic and experimental passive sonar signals.