基于卷绕空间的声学超材料消声器设计

Ki-Hwoon Shim, Junsu Jang, Hojin Kwon, Kyungjun Song
{"title":"基于卷绕空间的声学超材料消声器设计","authors":"Ki-Hwoon Shim, Junsu Jang, Hojin Kwon, Kyungjun Song","doi":"10.7776/ASK.2021.40.1.031","DOIUrl":null,"url":null,"abstract":": In this paper, we design an acoustic meta-material silencer that operates at low frequency to reduce noise in duct. A high refractive index meta-material silencer is demonstrated with a combination of zigzag structured thin waveguide and helmholtz resonator, which reduces the speed of sound. Finite Element Method (FEM) analysis via thermo-viscous acoustic mesh is performed in order to calculate thermo-viscous dissipation in sub-wavelength waveguide. Sound power reflection, transmission and absorption coefficients are obtained utilizing 4-Microphone Method. The results show that cut-off frequency and transmission loss can be controlled through adjusting intervals of the zigzag structures. A wide-band acoustic silencer is also suggested by connecting meta-materials in series or parallel.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"40 1","pages":"31-37"},"PeriodicalIF":0.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of acoustic meta-material silencer based on coiled up space\",\"authors\":\"Ki-Hwoon Shim, Junsu Jang, Hojin Kwon, Kyungjun Song\",\"doi\":\"10.7776/ASK.2021.40.1.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we design an acoustic meta-material silencer that operates at low frequency to reduce noise in duct. A high refractive index meta-material silencer is demonstrated with a combination of zigzag structured thin waveguide and helmholtz resonator, which reduces the speed of sound. Finite Element Method (FEM) analysis via thermo-viscous acoustic mesh is performed in order to calculate thermo-viscous dissipation in sub-wavelength waveguide. Sound power reflection, transmission and absorption coefficients are obtained utilizing 4-Microphone Method. The results show that cut-off frequency and transmission loss can be controlled through adjusting intervals of the zigzag structures. A wide-band acoustic silencer is also suggested by connecting meta-materials in series or parallel.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":\"40 1\",\"pages\":\"31-37\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2021.40.1.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2021.40.1.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of acoustic meta-material silencer based on coiled up space
: In this paper, we design an acoustic meta-material silencer that operates at low frequency to reduce noise in duct. A high refractive index meta-material silencer is demonstrated with a combination of zigzag structured thin waveguide and helmholtz resonator, which reduces the speed of sound. Finite Element Method (FEM) analysis via thermo-viscous acoustic mesh is performed in order to calculate thermo-viscous dissipation in sub-wavelength waveguide. Sound power reflection, transmission and absorption coefficients are obtained utilizing 4-Microphone Method. The results show that cut-off frequency and transmission loss can be controlled through adjusting intervals of the zigzag structures. A wide-band acoustic silencer is also suggested by connecting meta-materials in series or parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
期刊最新文献
A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model An explorative study on the perceived emotion of music: according to cognitive styles of music listening A robust data association gate method of non-linear target tracking in dense cluttered environment Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1