用激光扫描成像方法研究涂层导体的局部输运特性

IF 0.2 Q4 PHYSICS, APPLIED Progress in Superconductivity and Cryogenics Pub Date : 2016-06-30 DOI:10.9714/PSAC.2016.18.2.001
Gracia Kim, W. Jo, D. Nam, H. Cheong, S. H. Moon
{"title":"用激光扫描成像方法研究涂层导体的局部输运特性","authors":"Gracia Kim, W. Jo, D. Nam, H. Cheong, S. H. Moon","doi":"10.9714/PSAC.2016.18.2.001","DOIUrl":null,"url":null,"abstract":"Abstract To observe the superconducting current and structural properties of high critical temperature ( T c ) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near- T c , respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"1-4"},"PeriodicalIF":0.2000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local transport properties of coated conductors by laser-scan imaging methods\",\"authors\":\"Gracia Kim, W. Jo, D. Nam, H. Cheong, S. H. Moon\",\"doi\":\"10.9714/PSAC.2016.18.2.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To observe the superconducting current and structural properties of high critical temperature ( T c ) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near- T c , respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.\",\"PeriodicalId\":20758,\"journal\":{\"name\":\"Progress in Superconductivity and Cryogenics\",\"volume\":\"18 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Superconductivity and Cryogenics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9714/PSAC.2016.18.2.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Superconductivity and Cryogenics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9714/PSAC.2016.18.2.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了观察高温超导体(HTS)的超导电流和结构特性,我们提出了以下成像方法:室温热成像(RTI)、低温热成像(LTBM)和拉曼散射成像(Raman scattering imaging)。RTI和LTBM图像分别显示了室温(RT)下不同热梯度的热电电压和近温度下超导电流耗散。利用RTI,我们可以获得有关表面均匀性和杂质位置的结构信息。LTBM图像显示了作为局部临界电流函数的二维通量流。拉曼成像由特定区域的拉曼测量光谱转换而成,拉曼振动模式可以组合。拉曼成像可以量化区域的振动模式。因此,我们通过结合结果来证明超导材料的空间输运性质。此外,这使得电流对均匀超导晶体材料中杂质分布的影响可视化。这些成像方法有助于直接检查超导材料和导线的局部特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local transport properties of coated conductors by laser-scan imaging methods
Abstract To observe the superconducting current and structural properties of high critical temperature ( T c ) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near- T c , respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
33.30%
发文量
0
期刊介绍: Progress in Superconductivity and Cryogenics is the official publication of The Korea Institute of Applied Superconductivity and Cryogenics and the Korean Superconductivity Society. It was launched in 1999, and accepts original research articles and review papers on research on superconductivity and related fields of physics, electronic devices, materials science, large-scale applications for magnets, power and energy, and cryogenics. The Journal is published quarterly in March, June, September, and December each year. Supplemental issues are published occasionally. The official title of the journal is ''Progress in Superconductivity and Cryogenics'' and the abbreviated title is ''Prog. Supercond. Cryog.'' All submitted manuscripts are peer-reviewed by two reviewers. The text must be written in English. All the articles in this journal are KCI and SCOPUS as of 2015. The URL address of the journal is http://psac.kisac.org where full text is available. This work was supported by the Korean Federation of Science and Technology Societies grant funded by the Korea government.
期刊最新文献
Enhancement of the round-trip efficiency of liquid air energy storage (LAES) system using cascade cold storage units Characteristics comparison between air-cored and iron-cored 100 kW HTS field winding synchronous motors A parameter study on the pre-heat treatment for the fabrication of a large grain YBCO bulk superconductor without intermediate grinding step Design of HTS power cable with fault current limiting function Enhanced flux pinning property of GdBa 2 Cu 3 O 7-x films by ferromagnetic surface decoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1