TRPV1抑制通过抑制肿瘤生长和增强免疫反应来抑制非小细胞肺癌癌症的进展。

IF 4.9 2区 医学 Q2 CELL BIOLOGY Cellular Oncology Pub Date : 2024-06-01 Epub Date: 2023-10-30 DOI:10.1007/s13402-023-00894-7
Yang Wang, Yu Zhang, Jing Ouyang, Hanying Yi, Shiyu Wang, Dongbo Liu, Yingying Dai, Kun Song, Wenwu Pei, Ziyang Hong, Ling Chen, Wei Zhang, Zhaoqian Liu, Howard L Mcleod, Yijing He
{"title":"TRPV1抑制通过抑制肿瘤生长和增强免疫反应来抑制非小细胞肺癌癌症的进展。","authors":"Yang Wang, Yu Zhang, Jing Ouyang, Hanying Yi, Shiyu Wang, Dongbo Liu, Yingying Dai, Kun Song, Wenwu Pei, Ziyang Hong, Ling Chen, Wei Zhang, Zhaoqian Liu, Howard L Mcleod, Yijing He","doi":"10.1007/s13402-023-00894-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>TRPV1 is a nonselective Ca<sup>2+</sup> channel protein that is widely expressed and plays an important role during the occurrence and development of many cancers. Activation of TRPV1 channels can affect tumour progression by regulating proliferation, apoptosis and migration. Some studies have also shown that activating TRPV1 can affect tumour progression by modulating tumour immunity. However, the effects of TRPV1 on the development of non-small cell lung cancer (NSCLC) have not been explored clearly.</p><p><strong>Method: </strong>The Cancer Genome Atlas (TCGA) database and spatial transcriptomics datasets from 10 × Genomics were used to analyze TRPV1 expression in various tumour tissues. Cell proliferation and apoptosis were examined by cell counting kit 8 (CCK8), colony formation, and flow cytometry. Immunohistochemistry, qPCR, and western blotting were used to determine the mRNA and protein expression levels of TRPV1 and other related molecules. Tumour xenografts in BALB/C and C57BL/6J mice were used to determine the effects of TRPV1 on NSCLC development in vivo. Neurotransmitter content was examined by LC-MS/MS, ELISA and Immunohistochemistry. Immune cell infiltration was assessed by flow cytometry.</p><p><strong>Results: </strong>In this study, we found that TRPV1 expression was significantly upregulated in NSCLC and that patients with high TRPV1 expression had a poor prognosis. TRPV1 knockdown can significantly inhibit NSCLC proliferation and induce cell apoptosis through Ca<sup>2+</sup>-IGF1R signaling. In addition, TRPV1 knockdown resulted in increased infiltration of CD4<sup>+</sup> T cells, CD8<sup>+</sup> T cells, GZMB<sup>+</sup>CD8<sup>+</sup> T cells and DCs and decreased infiltration of immunosuppressive MDSCs in NSCLC. In addition, TRPV1 knockout effectively decreased the expression of M2 macrophage markers CD163 and increased the expression of M1-associated, costimulatory markers CD86. Knockdown or knockout of TRPV1 significantly inhibit tumour growth and promoted an antitumour immune response through supressing γ-aminobutyric acid (GABA) secretion in NSCLC.</p><p><strong>Conclusion: </strong>Our study suggests that TRPV1 acts as a tumour promoter in NSCLC, mediating pro-proliferative and anti-apoptotic effects on NSCLC through IGF1R signaling and regulating GABA release to affect the tumour immune response.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRPV1 inhibition suppresses non-small cell lung cancer progression by inhibiting tumour growth and enhancing the immune response.\",\"authors\":\"Yang Wang, Yu Zhang, Jing Ouyang, Hanying Yi, Shiyu Wang, Dongbo Liu, Yingying Dai, Kun Song, Wenwu Pei, Ziyang Hong, Ling Chen, Wei Zhang, Zhaoqian Liu, Howard L Mcleod, Yijing He\",\"doi\":\"10.1007/s13402-023-00894-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>TRPV1 is a nonselective Ca<sup>2+</sup> channel protein that is widely expressed and plays an important role during the occurrence and development of many cancers. Activation of TRPV1 channels can affect tumour progression by regulating proliferation, apoptosis and migration. Some studies have also shown that activating TRPV1 can affect tumour progression by modulating tumour immunity. However, the effects of TRPV1 on the development of non-small cell lung cancer (NSCLC) have not been explored clearly.</p><p><strong>Method: </strong>The Cancer Genome Atlas (TCGA) database and spatial transcriptomics datasets from 10 × Genomics were used to analyze TRPV1 expression in various tumour tissues. Cell proliferation and apoptosis were examined by cell counting kit 8 (CCK8), colony formation, and flow cytometry. Immunohistochemistry, qPCR, and western blotting were used to determine the mRNA and protein expression levels of TRPV1 and other related molecules. Tumour xenografts in BALB/C and C57BL/6J mice were used to determine the effects of TRPV1 on NSCLC development in vivo. Neurotransmitter content was examined by LC-MS/MS, ELISA and Immunohistochemistry. Immune cell infiltration was assessed by flow cytometry.</p><p><strong>Results: </strong>In this study, we found that TRPV1 expression was significantly upregulated in NSCLC and that patients with high TRPV1 expression had a poor prognosis. TRPV1 knockdown can significantly inhibit NSCLC proliferation and induce cell apoptosis through Ca<sup>2+</sup>-IGF1R signaling. In addition, TRPV1 knockdown resulted in increased infiltration of CD4<sup>+</sup> T cells, CD8<sup>+</sup> T cells, GZMB<sup>+</sup>CD8<sup>+</sup> T cells and DCs and decreased infiltration of immunosuppressive MDSCs in NSCLC. In addition, TRPV1 knockout effectively decreased the expression of M2 macrophage markers CD163 and increased the expression of M1-associated, costimulatory markers CD86. Knockdown or knockout of TRPV1 significantly inhibit tumour growth and promoted an antitumour immune response through supressing γ-aminobutyric acid (GABA) secretion in NSCLC.</p><p><strong>Conclusion: </strong>Our study suggests that TRPV1 acts as a tumour promoter in NSCLC, mediating pro-proliferative and anti-apoptotic effects on NSCLC through IGF1R signaling and regulating GABA release to affect the tumour immune response.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00894-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00894-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:TRPV1是一种广泛表达的非选择性Ca2+通道蛋白,在许多癌症的发生和发展过程中发挥着重要作用。TRPV1通道的激活可以通过调节增殖、凋亡和迁移来影响肿瘤的进展。一些研究还表明,激活TRPV1可以通过调节肿瘤免疫来影响肿瘤进展。然而,TRPV1对癌症(NSCLC)发展的影响尚不清楚。方法:利用癌症基因组图谱(TCGA)数据库和10×基因组的空间转录组学数据集分析TRPV1在各种肿瘤组织中的表达。通过细胞计数试剂盒8(CCK8)、集落形成和流式细胞术检测细胞增殖和凋亡。免疫组织化学、qPCR和蛋白质印迹用于测定TRPV1和其他相关分子的mRNA和蛋白质表达水平。使用BALB/C和C57BL/6J小鼠中的肿瘤异种移植物来确定TRPV1对体内NSCLC发展的影响。采用LC-MS/MS、ELISA和免疫组织化学方法检测神经递质含量。通过流式细胞术评估免疫细胞浸润。结果:在本研究中,我们发现TRPV1在NSCLC中的表达显著上调,TRPV1高表达的患者预后较差。TRPV1敲低可通过Ca2+-IGF1R信号传导显著抑制NSCLC增殖并诱导细胞凋亡。此外,TRPV1敲低导致NSCLC中CD4+T细胞、CD8+T细胞,GZMB+CD8+T细胞和DC的浸润增加,以及免疫抑制性MDSCs的浸润减少。此外,TRPV1敲除有效降低了M2巨噬细胞标志物CD163的表达,并增加了M1相关共刺激标志物CD86的表达。敲除或敲除TRPV1可显著抑制肿瘤生长,并通过抑制NSCLC中γ-氨基丁酸(GABA)的分泌促进抗肿瘤免疫反应。结论:我们的研究表明,TRPV1在NSCLC中起肿瘤启动子的作用,通过IGF1R信号传导介导NSCLC的促增殖和抗凋亡作用,并调节GABA的释放以影响肿瘤免疫反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TRPV1 inhibition suppresses non-small cell lung cancer progression by inhibiting tumour growth and enhancing the immune response.

Purpose: TRPV1 is a nonselective Ca2+ channel protein that is widely expressed and plays an important role during the occurrence and development of many cancers. Activation of TRPV1 channels can affect tumour progression by regulating proliferation, apoptosis and migration. Some studies have also shown that activating TRPV1 can affect tumour progression by modulating tumour immunity. However, the effects of TRPV1 on the development of non-small cell lung cancer (NSCLC) have not been explored clearly.

Method: The Cancer Genome Atlas (TCGA) database and spatial transcriptomics datasets from 10 × Genomics were used to analyze TRPV1 expression in various tumour tissues. Cell proliferation and apoptosis were examined by cell counting kit 8 (CCK8), colony formation, and flow cytometry. Immunohistochemistry, qPCR, and western blotting were used to determine the mRNA and protein expression levels of TRPV1 and other related molecules. Tumour xenografts in BALB/C and C57BL/6J mice were used to determine the effects of TRPV1 on NSCLC development in vivo. Neurotransmitter content was examined by LC-MS/MS, ELISA and Immunohistochemistry. Immune cell infiltration was assessed by flow cytometry.

Results: In this study, we found that TRPV1 expression was significantly upregulated in NSCLC and that patients with high TRPV1 expression had a poor prognosis. TRPV1 knockdown can significantly inhibit NSCLC proliferation and induce cell apoptosis through Ca2+-IGF1R signaling. In addition, TRPV1 knockdown resulted in increased infiltration of CD4+ T cells, CD8+ T cells, GZMB+CD8+ T cells and DCs and decreased infiltration of immunosuppressive MDSCs in NSCLC. In addition, TRPV1 knockout effectively decreased the expression of M2 macrophage markers CD163 and increased the expression of M1-associated, costimulatory markers CD86. Knockdown or knockout of TRPV1 significantly inhibit tumour growth and promoted an antitumour immune response through supressing γ-aminobutyric acid (GABA) secretion in NSCLC.

Conclusion: Our study suggests that TRPV1 acts as a tumour promoter in NSCLC, mediating pro-proliferative and anti-apoptotic effects on NSCLC through IGF1R signaling and regulating GABA release to affect the tumour immune response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
期刊最新文献
Non-glycanated ΔDCN isoform in muscle invasive bladder cancer mediates cancer stemness and gemcitabine resistance. SPG21, a potential oncogene targeted by miR-128-3p, amplifies HBx-induced carcinogenesis and chemoresistance via activation of TRPM7-mediated JNK pathway in hepatocellular carcinoma. Targeted gene delivery systems for T-cell engineering. HVEM in acute lymphocytic leukemia facilitates tumour immune escape by inhibiting CD8+ T cell function. COLEC10 inhibits the stemness of hepatocellular carcinoma by suppressing the activity of β-catenin signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1