Ronak Kumar Chaudhari, Priyanka A. Shah, Pranav S. Shrivastav
{"title":"利用蚕豆叶提取物绿色合成银纳米粒子及其在染料光催化降解中的应用。","authors":"Ronak Kumar Chaudhari, Priyanka A. Shah, Pranav S. Shrivastav","doi":"10.1186/s11671-023-03914-5","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes biogenic synthesis of silver nanoparticles (AgNPs) using <i>Adhatoda vasica</i> leaf extracts at room temperature. The prepared AgNPs were characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, Energy dispersive X-ray (EDX), High Resolution Transmission Electron Microscope, Scanning Electron Microscopy and Thermogravimetric analyser. The bio reduction method is devoid of any toxic chemicals, organic solvents, and external reducing, capping and stabilizing agent. The synthesized AgNPs had spherical shape with particle size ranging between 3.88 and 23.97 nm and had face centered cubic structure. UV–visible spectral analysis confirmed the formation of AgNPs with a characteristic surface plasmon resonance band at 419 nm. The EDX pattern revealed the presence of elemental Ag in AgNPs. The prepared AgNPs were used for degradation of Amaranth, Allura red and Fast green in aqueous medium, with ≥ 92.6% efficiency within 15 min using 5 mg of AgNPs. The optical bandgap, Eg value of 2.26 eV for AgNPs was found to be effective for rapid photocatalytic degradation of all the three dyes. The degradation process was observed to follow pseudo first order kinetics.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616034/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of silver nanoparticles using Adhatoda vasica leaf extract and its application in photocatalytic degradation of dyes\",\"authors\":\"Ronak Kumar Chaudhari, Priyanka A. Shah, Pranav S. Shrivastav\",\"doi\":\"10.1186/s11671-023-03914-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper describes biogenic synthesis of silver nanoparticles (AgNPs) using <i>Adhatoda vasica</i> leaf extracts at room temperature. The prepared AgNPs were characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, Energy dispersive X-ray (EDX), High Resolution Transmission Electron Microscope, Scanning Electron Microscopy and Thermogravimetric analyser. The bio reduction method is devoid of any toxic chemicals, organic solvents, and external reducing, capping and stabilizing agent. The synthesized AgNPs had spherical shape with particle size ranging between 3.88 and 23.97 nm and had face centered cubic structure. UV–visible spectral analysis confirmed the formation of AgNPs with a characteristic surface plasmon resonance band at 419 nm. The EDX pattern revealed the presence of elemental Ag in AgNPs. The prepared AgNPs were used for degradation of Amaranth, Allura red and Fast green in aqueous medium, with ≥ 92.6% efficiency within 15 min using 5 mg of AgNPs. The optical bandgap, Eg value of 2.26 eV for AgNPs was found to be effective for rapid photocatalytic degradation of all the three dyes. The degradation process was observed to follow pseudo first order kinetics.</p></div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-023-03914-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03914-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green synthesis of silver nanoparticles using Adhatoda vasica leaf extract and its application in photocatalytic degradation of dyes
The paper describes biogenic synthesis of silver nanoparticles (AgNPs) using Adhatoda vasica leaf extracts at room temperature. The prepared AgNPs were characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, Energy dispersive X-ray (EDX), High Resolution Transmission Electron Microscope, Scanning Electron Microscopy and Thermogravimetric analyser. The bio reduction method is devoid of any toxic chemicals, organic solvents, and external reducing, capping and stabilizing agent. The synthesized AgNPs had spherical shape with particle size ranging between 3.88 and 23.97 nm and had face centered cubic structure. UV–visible spectral analysis confirmed the formation of AgNPs with a characteristic surface plasmon resonance band at 419 nm. The EDX pattern revealed the presence of elemental Ag in AgNPs. The prepared AgNPs were used for degradation of Amaranth, Allura red and Fast green in aqueous medium, with ≥ 92.6% efficiency within 15 min using 5 mg of AgNPs. The optical bandgap, Eg value of 2.26 eV for AgNPs was found to be effective for rapid photocatalytic degradation of all the three dyes. The degradation process was observed to follow pseudo first order kinetics.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.