用于MITF抗原和D5单克隆抗体的微反杠杆生物传感器的设计与仿真有限元分析和实验。

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current protein & peptide science Pub Date : 2024-01-01 DOI:10.2174/0113892037259122231013153546
Pelin Akcali, Kübra Kelleci, Sevil Ozer
{"title":"用于MITF抗原和D5单克隆抗体的微反杠杆生物传感器的设计与仿真有限元分析和实验。","authors":"Pelin Akcali, Kübra Kelleci, Sevil Ozer","doi":"10.2174/0113892037259122231013153546","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.</p><p><strong>Methods: </strong>In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.</p><p><strong>Results: </strong>It has been found that the simulation results are supported by analytical calculations and experimental results.</p><p><strong>Conclusion: </strong>The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"256-266"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Simulation of the Microcantilever Biosensor for MITF Antigen and D5 Monoclonal Antibody Interaction Finite Element Analysis, and Experimental.\",\"authors\":\"Pelin Akcali, Kübra Kelleci, Sevil Ozer\",\"doi\":\"10.2174/0113892037259122231013153546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.</p><p><strong>Methods: </strong>In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.</p><p><strong>Results: </strong>It has been found that the simulation results are supported by analytical calculations and experimental results.</p><p><strong>Conclusion: </strong>The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"256-266\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037259122231013153546\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037259122231013153546","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在过去的几十年里,生物传感器和微机电系统得到了快速的发展和极大的兴趣。诊断、医疗和化学应用的不断进步已在多个平台和工具中得到证明。在本研究中,将用于生物分子分析的微悬臂梁的分析和有限元分析结果与实验分析结果进行了比较。方法:本研究选用黑色素瘤生物标志物MITF抗原和抗MITF抗体(D5)作为生物分子。利用两种分子之间特定的相互作用动力学和分子间结合能力,通过对AFM悬臂梁进行功能化,设计了MEMS型微悬臂梁生物传感器。利用有限元法对悬臂梁微型生物传感器进行了表面功能化。由于MITF-D5之间的相互作用而产生的应力已由悬臂的谐振频率偏差确定。结果:仿真结果得到了分析计算和实验结果的支持。结论:与昂贵和耗时的实验方法相比,模拟研究的结果与实验和数学结果重叠,这一事实使我们能够获得更便宜、更快的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Simulation of the Microcantilever Biosensor for MITF Antigen and D5 Monoclonal Antibody Interaction Finite Element Analysis, and Experimental.

Background: Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.

Methods: In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.

Results: It has been found that the simulation results are supported by analytical calculations and experimental results.

Conclusion: The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
期刊最新文献
Comparative Proteomic Analysis of Cell Wall Proteins of Aminoglycosides Resistant and Sensitive Mycobacterium tuberculosis Clinical Isolates. Myotoxicity of Crotoxin on C2C12 Myoblasts and its Inhibition by Crotalus Neutralizing Factor versus Enhanced Resistance in Myotubes: Exploring Toxicity and Membrane Potential. Insights into the Binding of Metadoxine with Bovine Serum Albumin: A Multi-Spectroscopic Investigation Combined with Molecular Docking. A Study on the Rationality of Baicalein in the Treatment of Osteoporosis: A Narrative Review. Effects of the Amyotrophic Lateral Sclerosis-related Q108P Mutation on the Structural Ensemble Characteristics of CHCHD10.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1