{"title":"Benford定律和更好的药物设计分布。","authors":"Alfonso T García-Sosa","doi":"10.1080/17460441.2023.2277342","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Modern drug discovery incorporates various tools and data, heralding the beginning of the data-driven drug design (DD) era. The distributions of chemical and physical data used for Artificial Intelligence (AI)/Machine Learning (ML) and to drive DD have thus become highly important to be understood and used effectively.</p><p><strong>Areas covered: </strong>The authors perform a comprehensive exploration of the statistical distributions driving the data-intensive era of drug discovery, including Benford's Law in AI/ML-based DD.</p><p><strong>Expert opinion: </strong>As the relevance of data-driven discovery escalates, we anticipate meticulous scrutiny of datasets utilizing principles like Benford's Law to enhance data integrity and guide efficient resource allocation and experimental planning. In this data-driven era of the pharmaceutical and medical industries, addressing critical aspects such as bias mitigation, algorithm effectiveness, data stewardship, effects, and fraud prevention are essential. Harnessing Benford's Law and other distributions and statistical tests in DD provides a potent strategy to detect data anomalies, fill data gaps, and enhance dataset quality. Benford's Law is a fast method for data integrity and quality of datasets, the backbone of AI/ML and other modeling approaches, proving very useful in the design process.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benford's Law and distributions for better drug design.\",\"authors\":\"Alfonso T García-Sosa\",\"doi\":\"10.1080/17460441.2023.2277342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Modern drug discovery incorporates various tools and data, heralding the beginning of the data-driven drug design (DD) era. The distributions of chemical and physical data used for Artificial Intelligence (AI)/Machine Learning (ML) and to drive DD have thus become highly important to be understood and used effectively.</p><p><strong>Areas covered: </strong>The authors perform a comprehensive exploration of the statistical distributions driving the data-intensive era of drug discovery, including Benford's Law in AI/ML-based DD.</p><p><strong>Expert opinion: </strong>As the relevance of data-driven discovery escalates, we anticipate meticulous scrutiny of datasets utilizing principles like Benford's Law to enhance data integrity and guide efficient resource allocation and experimental planning. In this data-driven era of the pharmaceutical and medical industries, addressing critical aspects such as bias mitigation, algorithm effectiveness, data stewardship, effects, and fraud prevention are essential. Harnessing Benford's Law and other distributions and statistical tests in DD provides a potent strategy to detect data anomalies, fill data gaps, and enhance dataset quality. Benford's Law is a fast method for data integrity and quality of datasets, the backbone of AI/ML and other modeling approaches, proving very useful in the design process.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2023.2277342\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2023.2277342","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Benford's Law and distributions for better drug design.
Introduction: Modern drug discovery incorporates various tools and data, heralding the beginning of the data-driven drug design (DD) era. The distributions of chemical and physical data used for Artificial Intelligence (AI)/Machine Learning (ML) and to drive DD have thus become highly important to be understood and used effectively.
Areas covered: The authors perform a comprehensive exploration of the statistical distributions driving the data-intensive era of drug discovery, including Benford's Law in AI/ML-based DD.
Expert opinion: As the relevance of data-driven discovery escalates, we anticipate meticulous scrutiny of datasets utilizing principles like Benford's Law to enhance data integrity and guide efficient resource allocation and experimental planning. In this data-driven era of the pharmaceutical and medical industries, addressing critical aspects such as bias mitigation, algorithm effectiveness, data stewardship, effects, and fraud prevention are essential. Harnessing Benford's Law and other distributions and statistical tests in DD provides a potent strategy to detect data anomalies, fill data gaps, and enhance dataset quality. Benford's Law is a fast method for data integrity and quality of datasets, the backbone of AI/ML and other modeling approaches, proving very useful in the design process.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.