认知受限主体的最优微调:一个用于建模、预测和控制选择架构效果的框架。

IF 5.1 1区 心理学 Q1 PSYCHOLOGY Psychological review Pub Date : 2023-11-01 Epub Date: 2023-11-02 DOI:10.1037/rev0000445
Frederick Callaway, Mathew Hardy, Thomas L Griffiths
{"title":"认知受限主体的最优微调:一个用于建模、预测和控制选择架构效果的框架。","authors":"Frederick Callaway, Mathew Hardy, Thomas L Griffiths","doi":"10.1037/rev0000445","DOIUrl":null,"url":null,"abstract":"<p><p>People's decisions often deviate from classical notions of rationality, incurring costs to themselves and society. One way to reduce the costs of poor decisions is to redesign the decision problems people face to encourage better choices. While often subtle, these <i>nudges</i> can have dramatic effects on behavior and are increasingly popular in public policy, health care, and marketing. Although nudges are often designed with psychological theories in mind, they are typically not formalized in computational terms and their effects can be hard to predict. As a result, designing nudges can be difficult and time-consuming. To address this challenge, we propose a computational framework for understanding and predicting the effects of nudges. Our approach builds on recent work modeling human decision making as adaptive use of limited cognitive resources, an approach called resource-rational analysis. In our framework, nudges change the <i>metalevel</i> problem the agent faces-that is, the problem of how to make a decision. This changes the optimal sequence of cognitive operations an agent should execute, which in turn influences their behavior. We show that models based on this framework can account for known effects of nudges based on default options, suggested alternatives, and information highlighting. In each case, we validate the model's predictions in an experimental process-tracing paradigm. We then show how the framework can be used to automatically construct optimal nudges, and demonstrate that these nudges improve people's decisions more than intuitive heuristic approaches. Overall, our results show that resource-rational analysis is a promising framework for formally characterizing and constructing nudges. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":21016,"journal":{"name":"Psychological review","volume":" ","pages":"1457-1491"},"PeriodicalIF":5.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal nudging for cognitively bounded agents: A framework for modeling, predicting, and controlling the effects of choice architectures.\",\"authors\":\"Frederick Callaway, Mathew Hardy, Thomas L Griffiths\",\"doi\":\"10.1037/rev0000445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>People's decisions often deviate from classical notions of rationality, incurring costs to themselves and society. One way to reduce the costs of poor decisions is to redesign the decision problems people face to encourage better choices. While often subtle, these <i>nudges</i> can have dramatic effects on behavior and are increasingly popular in public policy, health care, and marketing. Although nudges are often designed with psychological theories in mind, they are typically not formalized in computational terms and their effects can be hard to predict. As a result, designing nudges can be difficult and time-consuming. To address this challenge, we propose a computational framework for understanding and predicting the effects of nudges. Our approach builds on recent work modeling human decision making as adaptive use of limited cognitive resources, an approach called resource-rational analysis. In our framework, nudges change the <i>metalevel</i> problem the agent faces-that is, the problem of how to make a decision. This changes the optimal sequence of cognitive operations an agent should execute, which in turn influences their behavior. We show that models based on this framework can account for known effects of nudges based on default options, suggested alternatives, and information highlighting. In each case, we validate the model's predictions in an experimental process-tracing paradigm. We then show how the framework can be used to automatically construct optimal nudges, and demonstrate that these nudges improve people's decisions more than intuitive heuristic approaches. Overall, our results show that resource-rational analysis is a promising framework for formally characterizing and constructing nudges. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":21016,\"journal\":{\"name\":\"Psychological review\",\"volume\":\" \",\"pages\":\"1457-1491\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/rev0000445\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/rev0000445","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们的决策往往偏离了传统的理性观念,给自己和社会带来了代价。降低糟糕决策成本的一种方法是重新设计人们面临的决策问题,以鼓励更好的选择。虽然这些轻推往往很微妙,但会对行为产生巨大影响,并在公共政策、医疗保健和营销中越来越受欢迎。尽管轻推通常是在设计时考虑到心理理论的,但它们通常不是用计算的术语形式化的,其影响可能很难预测。因此,设计微调可能既困难又耗时。为了应对这一挑战,我们提出了一个理解和预测轻推效应的计算框架。我们的方法建立在最近的工作基础上,将人类决策建模为对有限认知资源的适应性使用,这种方法被称为资源理性分析。在我们的框架中,推动改变代理面临的元级问题,即如何做出决策的问题。这改变了代理应该执行的认知操作的最佳顺序,这反过来又影响了他们的行为。我们表明,基于该框架的模型可以解释基于默认选项、建议的替代方案和信息突出显示的微调的已知影响。在每种情况下,我们都会在实验过程跟踪范式中验证模型的预测。然后,我们展示了如何使用该框架来自动构建最优微调,并证明这些微调比直观的启发式方法更能改善人们的决策。总体而言,我们的结果表明,资源理性分析是一个很有前途的框架,可以正式表征和构建微调。(PsycInfo数据库记录(c)2023 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal nudging for cognitively bounded agents: A framework for modeling, predicting, and controlling the effects of choice architectures.

People's decisions often deviate from classical notions of rationality, incurring costs to themselves and society. One way to reduce the costs of poor decisions is to redesign the decision problems people face to encourage better choices. While often subtle, these nudges can have dramatic effects on behavior and are increasingly popular in public policy, health care, and marketing. Although nudges are often designed with psychological theories in mind, they are typically not formalized in computational terms and their effects can be hard to predict. As a result, designing nudges can be difficult and time-consuming. To address this challenge, we propose a computational framework for understanding and predicting the effects of nudges. Our approach builds on recent work modeling human decision making as adaptive use of limited cognitive resources, an approach called resource-rational analysis. In our framework, nudges change the metalevel problem the agent faces-that is, the problem of how to make a decision. This changes the optimal sequence of cognitive operations an agent should execute, which in turn influences their behavior. We show that models based on this framework can account for known effects of nudges based on default options, suggested alternatives, and information highlighting. In each case, we validate the model's predictions in an experimental process-tracing paradigm. We then show how the framework can be used to automatically construct optimal nudges, and demonstrate that these nudges improve people's decisions more than intuitive heuristic approaches. Overall, our results show that resource-rational analysis is a promising framework for formally characterizing and constructing nudges. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological review
Psychological review 医学-心理学
CiteScore
9.70
自引率
5.60%
发文量
97
期刊介绍: Psychological Review publishes articles that make important theoretical contributions to any area of scientific psychology, including systematic evaluation of alternative theories.
期刊最新文献
How does depressive cognition develop? A state-dependent network model of predictive processing. A theory of flexible multimodal synchrony. Bouncing back from life's perturbations: Formalizing psychological resilience from a complex systems perspective. Bouncing back from life's perturbations: Formalizing psychological resilience from a complex systems perspective. The meaning of attention control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1