{"title":"伪值深度生存分析及其在预测癌症IV期肿瘤切除后复发中的应用。","authors":"Yi Xia, Baifu Zhang, Yongliang Zhang","doi":"10.1080/10255842.2023.2275246","DOIUrl":null,"url":null,"abstract":"<p><p>An improved DeepSurv model is proposed for predicting the prognosis of colorectal cancer patients at stage IV. Our model, called as PseudoDeepSurv, is optimized by a novel loss function, which is the combination of the average negative log partial likelihood and the mean-squared error derived from the pseudo-observations approach. The public BioStudies dataset including 999 patients was utilized for performance evaluation. Our PseudoDeepSurv model produced a C-index of 0.684 and 0.633 on the training and testing dataset, respectively. While for the original DeepSurv model, the corresponding values are 0.671 and 0.618, respectively.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"2189-2198"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep survival analysis using pseudo values and its application to predict the recurrence of stage IV colorectal cancer after tumor resection.\",\"authors\":\"Yi Xia, Baifu Zhang, Yongliang Zhang\",\"doi\":\"10.1080/10255842.2023.2275246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An improved DeepSurv model is proposed for predicting the prognosis of colorectal cancer patients at stage IV. Our model, called as PseudoDeepSurv, is optimized by a novel loss function, which is the combination of the average negative log partial likelihood and the mean-squared error derived from the pseudo-observations approach. The public BioStudies dataset including 999 patients was utilized for performance evaluation. Our PseudoDeepSurv model produced a C-index of 0.684 and 0.633 on the training and testing dataset, respectively. While for the original DeepSurv model, the corresponding values are 0.671 and 0.618, respectively.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"2189-2198\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2275246\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2275246","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep survival analysis using pseudo values and its application to predict the recurrence of stage IV colorectal cancer after tumor resection.
An improved DeepSurv model is proposed for predicting the prognosis of colorectal cancer patients at stage IV. Our model, called as PseudoDeepSurv, is optimized by a novel loss function, which is the combination of the average negative log partial likelihood and the mean-squared error derived from the pseudo-observations approach. The public BioStudies dataset including 999 patients was utilized for performance evaluation. Our PseudoDeepSurv model produced a C-index of 0.684 and 0.633 on the training and testing dataset, respectively. While for the original DeepSurv model, the corresponding values are 0.671 and 0.618, respectively.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.