网格变形:人脑MRI皮层下结构的表面重建。

Junjie Zhao, Siyuan Liu, Sahar Ahmad, Yap Pew-Thian
{"title":"网格变形:人脑MRI皮层下结构的表面重建。","authors":"Junjie Zhao, Siyuan Liu, Sahar Ahmad, Yap Pew-Thian","doi":"10.1007/978-3-031-34048-2_41","DOIUrl":null,"url":null,"abstract":"<p><p>Surface reconstruction of cortical and subcortical structures is crucial for brain morphological studies. Existing deep learning surface reconstruction methods, such as DeepCSR and Vox2Surf, learn an implicit field function for computing the isosurface, but do not consider mesh topology. In this paper, we propose a novel and efficient deep learning mesh deformation network, called MeshDeform, to reconstruct topologically correct surfaces of subcortical structures using brain MR images. MeshDeform combines features extracted from a U-Net encoder with mesh deformation blocks to predict surfaces of subcortical structures by deforming spherical mesh templates. MeshDeform is able to reconstruct in less than 10 seconds the surfaces of a left-right pair of subcortical structures with subvoxel accuracy. Reconstruction of all 17 subcortical structures takes less than one and a half minutes. By contrast, Vox2Surf takes about 20-30 minutes for all subcortical structures. Visual and quantitative evaluation on the Human Connectome Project (HCP) dataset demonstrate that MeshDeform generates accurate subcortical surfaces in limited time while preserving mesh topology.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"13939 ","pages":"536-547"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617631/pdf/","citationCount":"0","resultStr":"{\"title\":\"MeshDeform: Surface Reconstruction of Subcortical Structures in Human Brain MRI.\",\"authors\":\"Junjie Zhao, Siyuan Liu, Sahar Ahmad, Yap Pew-Thian\",\"doi\":\"10.1007/978-3-031-34048-2_41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface reconstruction of cortical and subcortical structures is crucial for brain morphological studies. Existing deep learning surface reconstruction methods, such as DeepCSR and Vox2Surf, learn an implicit field function for computing the isosurface, but do not consider mesh topology. In this paper, we propose a novel and efficient deep learning mesh deformation network, called MeshDeform, to reconstruct topologically correct surfaces of subcortical structures using brain MR images. MeshDeform combines features extracted from a U-Net encoder with mesh deformation blocks to predict surfaces of subcortical structures by deforming spherical mesh templates. MeshDeform is able to reconstruct in less than 10 seconds the surfaces of a left-right pair of subcortical structures with subvoxel accuracy. Reconstruction of all 17 subcortical structures takes less than one and a half minutes. By contrast, Vox2Surf takes about 20-30 minutes for all subcortical structures. Visual and quantitative evaluation on the Human Connectome Project (HCP) dataset demonstrate that MeshDeform generates accurate subcortical surfaces in limited time while preserving mesh topology.</p>\",\"PeriodicalId\":73379,\"journal\":{\"name\":\"Information processing in medical imaging : proceedings of the ... conference\",\"volume\":\"13939 \",\"pages\":\"536-547\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information processing in medical imaging : proceedings of the ... conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-34048-2_41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-34048-2_41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮层和皮层下结构的表面重建对大脑形态学研究至关重要。现有的深度学习表面重建方法,如DeepCSR和Vox2Surf,学习用于计算等值面的隐式场函数,但不考虑网格拓扑。在本文中,我们提出了一种新的高效深度学习网格变形网络,称为MeshDeform,用于使用大脑MR图像重建皮层下结构的拓扑正确表面。MeshDeform将从U-Net编码器提取的特征与网格变形块相结合,通过使球形网格模板变形来预测皮层下结构的表面。MeshDeform能够在不到10秒内以亚体素精度重建左右一对皮层下结构的表面。所有17个皮质下结构的重建需要不到一分半钟的时间。相比之下,所有皮层下结构的Vox2Surf大约需要20-30分钟。对人类连接体项目(HCP)数据集的视觉和定量评估表明,MeshDeform在有限的时间内生成准确的皮层下表面,同时保留网格拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MeshDeform: Surface Reconstruction of Subcortical Structures in Human Brain MRI.

Surface reconstruction of cortical and subcortical structures is crucial for brain morphological studies. Existing deep learning surface reconstruction methods, such as DeepCSR and Vox2Surf, learn an implicit field function for computing the isosurface, but do not consider mesh topology. In this paper, we propose a novel and efficient deep learning mesh deformation network, called MeshDeform, to reconstruct topologically correct surfaces of subcortical structures using brain MR images. MeshDeform combines features extracted from a U-Net encoder with mesh deformation blocks to predict surfaces of subcortical structures by deforming spherical mesh templates. MeshDeform is able to reconstruct in less than 10 seconds the surfaces of a left-right pair of subcortical structures with subvoxel accuracy. Reconstruction of all 17 subcortical structures takes less than one and a half minutes. By contrast, Vox2Surf takes about 20-30 minutes for all subcortical structures. Visual and quantitative evaluation on the Human Connectome Project (HCP) dataset demonstrate that MeshDeform generates accurate subcortical surfaces in limited time while preserving mesh topology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vicinal Feature Statistics Augmentation for Federated 3D Medical Volume Segmentation Better Generalization of White Matter Tract Segmentation to Arbitrary Datasets with Scaled Residual Bootstrap Unsupervised Adaptation of Polyp Segmentation Models via Coarse-to-Fine Self-Supervision Weakly Semi-supervised Detection in Lung Ultrasound Videos Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1