{"title":"偏微分方程系数贝叶斯反演的一个基准","authors":"David Aristoff, Wolfgang Bangerth","doi":"10.1137/21m1399464","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 65, Issue 4, Page 1074-1105, November 2023. <br/> Bayesian methods have been widely used in the last two decades to infer statistical properties of spatially variable coefficients in partial differential equations from measurements of the solutions of these equations. Yet, in many cases the number of variables used to parameterize these coefficients is large, and oobtaining meaningful statistics of their probability distributions is difficult using simple sampling methods such as the basic Metropolis--Hastings algorithm---in particular, if the inverse problem is ill-conditioned or ill-posed. As a consequence, many advanced sampling methods have been described in the literature that converge faster than Metropolis--Hastings, for example, by exploiting hierarchies of statistical models or hierarchies of discretizations of the underlying differential equation. At the same time, it remains difficult for the reader of the literature to quantify the advantages of these algorithms because there is no commonly used benchmark. This paper presents a benchmark Bayesian inverse problem---namely, the determination of a spatially variable coefficient, discretized by 64 values, in a Poisson equation, based on point measurements of the solution---that fills the gap between widely used simple test cases (such as superpositions of Gaussians) and real applications that are difficult to replicate for developers of sampling algorithms. We provide a complete description of the test case and provide an open-source implementation that can serve as the basis for further experiments. We have also computed $2\\times 10^{11}$ samples, at a cost of some 30 CPU years, of the posterior probability distribution from which we have generated detailed and accurate statistics against which other sampling algorithms can be tested.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"11 12","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Benchmark for the Bayesian Inversion of Coefficients in Partial Differential Equations\",\"authors\":\"David Aristoff, Wolfgang Bangerth\",\"doi\":\"10.1137/21m1399464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 65, Issue 4, Page 1074-1105, November 2023. <br/> Bayesian methods have been widely used in the last two decades to infer statistical properties of spatially variable coefficients in partial differential equations from measurements of the solutions of these equations. Yet, in many cases the number of variables used to parameterize these coefficients is large, and oobtaining meaningful statistics of their probability distributions is difficult using simple sampling methods such as the basic Metropolis--Hastings algorithm---in particular, if the inverse problem is ill-conditioned or ill-posed. As a consequence, many advanced sampling methods have been described in the literature that converge faster than Metropolis--Hastings, for example, by exploiting hierarchies of statistical models or hierarchies of discretizations of the underlying differential equation. At the same time, it remains difficult for the reader of the literature to quantify the advantages of these algorithms because there is no commonly used benchmark. This paper presents a benchmark Bayesian inverse problem---namely, the determination of a spatially variable coefficient, discretized by 64 values, in a Poisson equation, based on point measurements of the solution---that fills the gap between widely used simple test cases (such as superpositions of Gaussians) and real applications that are difficult to replicate for developers of sampling algorithms. We provide a complete description of the test case and provide an open-source implementation that can serve as the basis for further experiments. We have also computed $2\\\\times 10^{11}$ samples, at a cost of some 30 CPU years, of the posterior probability distribution from which we have generated detailed and accurate statistics against which other sampling algorithms can be tested.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1399464\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1399464","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Benchmark for the Bayesian Inversion of Coefficients in Partial Differential Equations
SIAM Review, Volume 65, Issue 4, Page 1074-1105, November 2023. Bayesian methods have been widely used in the last two decades to infer statistical properties of spatially variable coefficients in partial differential equations from measurements of the solutions of these equations. Yet, in many cases the number of variables used to parameterize these coefficients is large, and oobtaining meaningful statistics of their probability distributions is difficult using simple sampling methods such as the basic Metropolis--Hastings algorithm---in particular, if the inverse problem is ill-conditioned or ill-posed. As a consequence, many advanced sampling methods have been described in the literature that converge faster than Metropolis--Hastings, for example, by exploiting hierarchies of statistical models or hierarchies of discretizations of the underlying differential equation. At the same time, it remains difficult for the reader of the literature to quantify the advantages of these algorithms because there is no commonly used benchmark. This paper presents a benchmark Bayesian inverse problem---namely, the determination of a spatially variable coefficient, discretized by 64 values, in a Poisson equation, based on point measurements of the solution---that fills the gap between widely used simple test cases (such as superpositions of Gaussians) and real applications that are difficult to replicate for developers of sampling algorithms. We provide a complete description of the test case and provide an open-source implementation that can serve as the basis for further experiments. We have also computed $2\times 10^{11}$ samples, at a cost of some 30 CPU years, of the posterior probability distribution from which we have generated detailed and accurate statistics against which other sampling algorithms can be tested.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.