{"title":"NRP1在恶性肿瘤中的综合分析为治疗感染SARS-CoV-2的癌症患者提供了治疗意义。","authors":"Shuzhao Chen, Limei Zhang, Yiling Song, Kunying Xie, Yun Wang, Yang Liang","doi":"10.1007/s10528-023-10518-2","DOIUrl":null,"url":null,"abstract":"<div><p>COVID-19 (Coronavirus disease 2019) is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which can lead to pneumonia, cytokine storms, and lymphopenia. Patients with cancer are more susceptible to SARS-CoV-2 infection and severe COVID-19 due to immunosuppression. Recent studies have indicated that NRP1 (Neuropilin 1) may act as a novel mediator of SARS-CoV-2 entry into the host cell. As no systematic review has been performed investigating the characteristics of NRP1 in pan-carcinoma, we comprehensively analyzed NRP1 in patients with pan-cancer. Using a bioinformatics approach, we aimed to systematically examine NRP1 expression profiles in both pan-carcinoma and healthy tissues. We found that lung and genitourinary cancers have a relatively higher NRP-1 expression than other cancer patients, suggesting that these patients may be more susceptible to SARS-CoV-2. Our analysis further revealed that NRP1 expression was downregulated in Vero E6 cells, whole blood, lung organoids, testis tissue, and alveolospheres infected with SARS-CoV-2. Notably, NRP1 was associated with immune cell infiltration, immune checkpoint genes, and immune-related genes in most patients with cancer. These findings suggest that, in patients with specific types of cancer, especially lung and genitourinary, high expression of NRP1 contributes to greater susceptibility to SARS-CoV-2 infection and an increased risk of damage due to cytokine storms. Overall, NRP1 appears to play a critical role in regulating immunological properties and metabolism in many tumor types. Specific inhibitors of the NRP1 antigen (pegaptanib, EG00229, or MNRP1685A) combined with other anti-SARS-CoV-2 strategies may aid in treating patients with lung and genitourinary cancers following SARS-CoV-2 infection.</p></div>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":"62 4","pages":"2399 - 2417"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Analysis of NRP1 in Malignancies Provide Therapeutic Implication for Treating Cancer Patients Infected with SARS-CoV-2\",\"authors\":\"Shuzhao Chen, Limei Zhang, Yiling Song, Kunying Xie, Yun Wang, Yang Liang\",\"doi\":\"10.1007/s10528-023-10518-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>COVID-19 (Coronavirus disease 2019) is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which can lead to pneumonia, cytokine storms, and lymphopenia. Patients with cancer are more susceptible to SARS-CoV-2 infection and severe COVID-19 due to immunosuppression. Recent studies have indicated that NRP1 (Neuropilin 1) may act as a novel mediator of SARS-CoV-2 entry into the host cell. As no systematic review has been performed investigating the characteristics of NRP1 in pan-carcinoma, we comprehensively analyzed NRP1 in patients with pan-cancer. Using a bioinformatics approach, we aimed to systematically examine NRP1 expression profiles in both pan-carcinoma and healthy tissues. We found that lung and genitourinary cancers have a relatively higher NRP-1 expression than other cancer patients, suggesting that these patients may be more susceptible to SARS-CoV-2. Our analysis further revealed that NRP1 expression was downregulated in Vero E6 cells, whole blood, lung organoids, testis tissue, and alveolospheres infected with SARS-CoV-2. Notably, NRP1 was associated with immune cell infiltration, immune checkpoint genes, and immune-related genes in most patients with cancer. These findings suggest that, in patients with specific types of cancer, especially lung and genitourinary, high expression of NRP1 contributes to greater susceptibility to SARS-CoV-2 infection and an increased risk of damage due to cytokine storms. Overall, NRP1 appears to play a critical role in regulating immunological properties and metabolism in many tumor types. Specific inhibitors of the NRP1 antigen (pegaptanib, EG00229, or MNRP1685A) combined with other anti-SARS-CoV-2 strategies may aid in treating patients with lung and genitourinary cancers following SARS-CoV-2 infection.</p></div>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\"62 4\",\"pages\":\"2399 - 2417\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10528-023-10518-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10528-023-10518-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Comprehensive Analysis of NRP1 in Malignancies Provide Therapeutic Implication for Treating Cancer Patients Infected with SARS-CoV-2
COVID-19 (Coronavirus disease 2019) is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which can lead to pneumonia, cytokine storms, and lymphopenia. Patients with cancer are more susceptible to SARS-CoV-2 infection and severe COVID-19 due to immunosuppression. Recent studies have indicated that NRP1 (Neuropilin 1) may act as a novel mediator of SARS-CoV-2 entry into the host cell. As no systematic review has been performed investigating the characteristics of NRP1 in pan-carcinoma, we comprehensively analyzed NRP1 in patients with pan-cancer. Using a bioinformatics approach, we aimed to systematically examine NRP1 expression profiles in both pan-carcinoma and healthy tissues. We found that lung and genitourinary cancers have a relatively higher NRP-1 expression than other cancer patients, suggesting that these patients may be more susceptible to SARS-CoV-2. Our analysis further revealed that NRP1 expression was downregulated in Vero E6 cells, whole blood, lung organoids, testis tissue, and alveolospheres infected with SARS-CoV-2. Notably, NRP1 was associated with immune cell infiltration, immune checkpoint genes, and immune-related genes in most patients with cancer. These findings suggest that, in patients with specific types of cancer, especially lung and genitourinary, high expression of NRP1 contributes to greater susceptibility to SARS-CoV-2 infection and an increased risk of damage due to cytokine storms. Overall, NRP1 appears to play a critical role in regulating immunological properties and metabolism in many tumor types. Specific inhibitors of the NRP1 antigen (pegaptanib, EG00229, or MNRP1685A) combined with other anti-SARS-CoV-2 strategies may aid in treating patients with lung and genitourinary cancers following SARS-CoV-2 infection.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.