Maryke Kahts, Hua Guo, Harikrishna Kommidi, Yanping Yang, Haluk Burcak Sayman, Beverley Summers, Richard Ting, Jan Rijn Zeevaart, Mike Sathekge, Omer Aras
{"title":"89Zr白细胞标记用于细胞运输:体外和临床前研究。","authors":"Maryke Kahts, Hua Guo, Harikrishna Kommidi, Yanping Yang, Haluk Burcak Sayman, Beverley Summers, Richard Ting, Jan Rijn Zeevaart, Mike Sathekge, Omer Aras","doi":"10.1186/s41181-023-00223-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The non-invasive imaging of leukocyte trafficking to assess inflammatory areas and monitor immunotherapy is currently generating great interest. There is a need to develop more robust cell labelling and imaging approaches to track living cells. Positron emission tomography (PET), a highly sensitive molecular imaging technique, allows precise signals to be produced from radiolabelled moieties. Here, we developed a novel leukocyte labelling approach with the PET radioisotope zirconium-89 (<sup>89</sup>Zr, half-life of 78.4 h). Experiments were carried out using human leukocytes, freshly isolated from whole human blood.</p><h3>Results</h3><p>The <sup>89</sup>Zr-leukocyte labelling efficiency ranged from 46 to 87% after 30–60 min. Radioactivity concentrations of labelled cells were up to 0.28 MBq/1 million cells. Systemically administered <sup>89</sup>Zr-labelled leukocytes produced high-contrast murine PET images at 1 h–5 days post injection. Murine biodistribution data showed that cells primarily distributed to the lung, liver, and spleen at 1 h post injection, and are then gradually trafficked to liver and spleen over 5 days. Histological analysis demonstrated that exogenously <sup>89</sup>Zr-labelled human leukocytes were present in the lung, liver, and spleen at 1 h post injection. However, intravenously injected free [<sup>89</sup>Zr]Zr<sup>4+</sup> ion showed retention only in the bone with no radioactivity in the lung at 5 days post injection, which implied good stability of radiolabelled leukocytes in vivo.</p><h3>Conclusions</h3><p>Our study presents a stable and generic radiolabelling technique to track leukocytes with PET imaging and shows great potential for further applications in inflammatory cell and other types of cell trafficking studies.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"8 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628102/pdf/","citationCount":"0","resultStr":"{\"title\":\"89Zr-leukocyte labelling for cell trafficking: in vitro and preclinical investigations\",\"authors\":\"Maryke Kahts, Hua Guo, Harikrishna Kommidi, Yanping Yang, Haluk Burcak Sayman, Beverley Summers, Richard Ting, Jan Rijn Zeevaart, Mike Sathekge, Omer Aras\",\"doi\":\"10.1186/s41181-023-00223-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The non-invasive imaging of leukocyte trafficking to assess inflammatory areas and monitor immunotherapy is currently generating great interest. There is a need to develop more robust cell labelling and imaging approaches to track living cells. Positron emission tomography (PET), a highly sensitive molecular imaging technique, allows precise signals to be produced from radiolabelled moieties. Here, we developed a novel leukocyte labelling approach with the PET radioisotope zirconium-89 (<sup>89</sup>Zr, half-life of 78.4 h). Experiments were carried out using human leukocytes, freshly isolated from whole human blood.</p><h3>Results</h3><p>The <sup>89</sup>Zr-leukocyte labelling efficiency ranged from 46 to 87% after 30–60 min. Radioactivity concentrations of labelled cells were up to 0.28 MBq/1 million cells. Systemically administered <sup>89</sup>Zr-labelled leukocytes produced high-contrast murine PET images at 1 h–5 days post injection. Murine biodistribution data showed that cells primarily distributed to the lung, liver, and spleen at 1 h post injection, and are then gradually trafficked to liver and spleen over 5 days. Histological analysis demonstrated that exogenously <sup>89</sup>Zr-labelled human leukocytes were present in the lung, liver, and spleen at 1 h post injection. However, intravenously injected free [<sup>89</sup>Zr]Zr<sup>4+</sup> ion showed retention only in the bone with no radioactivity in the lung at 5 days post injection, which implied good stability of radiolabelled leukocytes in vivo.</p><h3>Conclusions</h3><p>Our study presents a stable and generic radiolabelling technique to track leukocytes with PET imaging and shows great potential for further applications in inflammatory cell and other types of cell trafficking studies.</p></div>\",\"PeriodicalId\":534,\"journal\":{\"name\":\"EJNMMI Radiopharmacy and Chemistry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628102/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Radiopharmacy and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41181-023-00223-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-023-00223-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
89Zr-leukocyte labelling for cell trafficking: in vitro and preclinical investigations
Background
The non-invasive imaging of leukocyte trafficking to assess inflammatory areas and monitor immunotherapy is currently generating great interest. There is a need to develop more robust cell labelling and imaging approaches to track living cells. Positron emission tomography (PET), a highly sensitive molecular imaging technique, allows precise signals to be produced from radiolabelled moieties. Here, we developed a novel leukocyte labelling approach with the PET radioisotope zirconium-89 (89Zr, half-life of 78.4 h). Experiments were carried out using human leukocytes, freshly isolated from whole human blood.
Results
The 89Zr-leukocyte labelling efficiency ranged from 46 to 87% after 30–60 min. Radioactivity concentrations of labelled cells were up to 0.28 MBq/1 million cells. Systemically administered 89Zr-labelled leukocytes produced high-contrast murine PET images at 1 h–5 days post injection. Murine biodistribution data showed that cells primarily distributed to the lung, liver, and spleen at 1 h post injection, and are then gradually trafficked to liver and spleen over 5 days. Histological analysis demonstrated that exogenously 89Zr-labelled human leukocytes were present in the lung, liver, and spleen at 1 h post injection. However, intravenously injected free [89Zr]Zr4+ ion showed retention only in the bone with no radioactivity in the lung at 5 days post injection, which implied good stability of radiolabelled leukocytes in vivo.
Conclusions
Our study presents a stable and generic radiolabelling technique to track leukocytes with PET imaging and shows great potential for further applications in inflammatory cell and other types of cell trafficking studies.