Wil J. Reynolds, Ndubuisi Eje, Paul Christensen, Wen-Hwa Li, Susan M. Daly, Ramine Parsa, Bhaven Chavan, Mark A. Birch-Machin
{"title":"空气污染对人体皮肤等同物功能的生物影响。","authors":"Wil J. Reynolds, Ndubuisi Eje, Paul Christensen, Wen-Hwa Li, Susan M. Daly, Ramine Parsa, Bhaven Chavan, Mark A. Birch-Machin","doi":"10.1096/fba.2023-00068","DOIUrl":null,"url":null,"abstract":"<p>The World Health Organization reports that 99% of the global population are exposed to pollution levels higher than the recommended air quality guidelines. Pollution-induced changes in the skin have begun to surface; however, the effects require further investigation so that effective protective strategies can be developed. This study aimed to investigate some of the aging-associated effects caused by ozone and particulate matter (PM) on human skin equivalents. Full-thickness skin equivalents were exposed to 0.01 μg/μL PM, 0.05 μg/μL PM, 0.3 ppm ozone, or a combination of 0.01 μg/μL PM and 0.3 ppm ozone, before skin equivalents and culture medium were harvested for histological/immunohistochemical staining, gene and protein expression analysis using qPCR, Western blotting, and ELISA. Markers include MMP-1, MMP-3, <i>COL1A1</i>, collagen-I, 4-HNE, HMGCR, and PGE2. PM was observed to induce a decrease in epidermal thickness and an enhanced matrix building phenotype, with increases in <i>COL1A1</i> and an increase in collagen-I protein expression. By contrast, ozone induced an increase in epidermal thickness and was found to induce a matrix-degrading phenotype, with decreases in collagen-I gene/protein expression and increases in MMP-1 and MMP-3 gene/protein expression. Ozone was also found to induce changes in lipid homeostasis and inflammation induction. Some synergistic damage was also observed when combining ozone and 0.01 μg/μL PM. The results presented in this study identify distinct pollutant-induced effects and show how pollutants may act synergistically to augment damage; given individuals are rarely only exposed to one pollutant type, exposure to multiple pollutant types should be considered to develop effective protective interventions.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"5 11","pages":"470-483"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological effects of air pollution on the function of human skin equivalents\",\"authors\":\"Wil J. Reynolds, Ndubuisi Eje, Paul Christensen, Wen-Hwa Li, Susan M. Daly, Ramine Parsa, Bhaven Chavan, Mark A. Birch-Machin\",\"doi\":\"10.1096/fba.2023-00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The World Health Organization reports that 99% of the global population are exposed to pollution levels higher than the recommended air quality guidelines. Pollution-induced changes in the skin have begun to surface; however, the effects require further investigation so that effective protective strategies can be developed. This study aimed to investigate some of the aging-associated effects caused by ozone and particulate matter (PM) on human skin equivalents. Full-thickness skin equivalents were exposed to 0.01 μg/μL PM, 0.05 μg/μL PM, 0.3 ppm ozone, or a combination of 0.01 μg/μL PM and 0.3 ppm ozone, before skin equivalents and culture medium were harvested for histological/immunohistochemical staining, gene and protein expression analysis using qPCR, Western blotting, and ELISA. Markers include MMP-1, MMP-3, <i>COL1A1</i>, collagen-I, 4-HNE, HMGCR, and PGE2. PM was observed to induce a decrease in epidermal thickness and an enhanced matrix building phenotype, with increases in <i>COL1A1</i> and an increase in collagen-I protein expression. By contrast, ozone induced an increase in epidermal thickness and was found to induce a matrix-degrading phenotype, with decreases in collagen-I gene/protein expression and increases in MMP-1 and MMP-3 gene/protein expression. Ozone was also found to induce changes in lipid homeostasis and inflammation induction. Some synergistic damage was also observed when combining ozone and 0.01 μg/μL PM. The results presented in this study identify distinct pollutant-induced effects and show how pollutants may act synergistically to augment damage; given individuals are rarely only exposed to one pollutant type, exposure to multiple pollutant types should be considered to develop effective protective interventions.</p>\",\"PeriodicalId\":12093,\"journal\":{\"name\":\"FASEB bioAdvances\",\"volume\":\"5 11\",\"pages\":\"470-483\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB bioAdvances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fba.2023-00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2023-00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biological effects of air pollution on the function of human skin equivalents
The World Health Organization reports that 99% of the global population are exposed to pollution levels higher than the recommended air quality guidelines. Pollution-induced changes in the skin have begun to surface; however, the effects require further investigation so that effective protective strategies can be developed. This study aimed to investigate some of the aging-associated effects caused by ozone and particulate matter (PM) on human skin equivalents. Full-thickness skin equivalents were exposed to 0.01 μg/μL PM, 0.05 μg/μL PM, 0.3 ppm ozone, or a combination of 0.01 μg/μL PM and 0.3 ppm ozone, before skin equivalents and culture medium were harvested for histological/immunohistochemical staining, gene and protein expression analysis using qPCR, Western blotting, and ELISA. Markers include MMP-1, MMP-3, COL1A1, collagen-I, 4-HNE, HMGCR, and PGE2. PM was observed to induce a decrease in epidermal thickness and an enhanced matrix building phenotype, with increases in COL1A1 and an increase in collagen-I protein expression. By contrast, ozone induced an increase in epidermal thickness and was found to induce a matrix-degrading phenotype, with decreases in collagen-I gene/protein expression and increases in MMP-1 and MMP-3 gene/protein expression. Ozone was also found to induce changes in lipid homeostasis and inflammation induction. Some synergistic damage was also observed when combining ozone and 0.01 μg/μL PM. The results presented in this study identify distinct pollutant-induced effects and show how pollutants may act synergistically to augment damage; given individuals are rarely only exposed to one pollutant type, exposure to multiple pollutant types should be considered to develop effective protective interventions.