{"title":"更好地结合在一起:挥发性介导的公会内部对Tuta absoluta和Trialeurodes vaporarium对番茄植物偏好的影响。","authors":"F Rodrigo, A P Burgueño, A González, C Rossini","doi":"10.1007/s10886-023-01458-7","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-herbivore interactions have been extensively studied in tomato plants and their most common pests. Tomato plant chemical defenses, both constitutive and inducible, play a role in mediating these interactions. Damaged tomato plants alter their volatile profiles, affecting herbivore preferences between undamaged and damaged plants. However, previous studies on tomato volatiles and herbivore preferences have yielded conflicting results, both in the volatile chemistry itself as well as in the attraction/repellent herbivore response. This study revisits the volatile-mediated interactions between tomato plants and two of their main herbivores: the leafminer Tuta absoluta and the whitefly Trialeurodes vaporariorum. Tomato plant volatiles were analyzed before and after damage by each of these herbivores, and the preference for oviposition (T. absoluta) and settling (T. vaporariorum) on undamaged and damaged plants was assessed both after conspecific and heterospecific damage. We found that both insects consistently preferred damaged plants over undamaged plants. The emission of herbivore-induced plant volatiles (HIPVs) increased after T. absoluta damage but decreased after T. vaporariorum damage. While some of our findings are in line with previous reports, T. absoluta preferred to oviposit on plants damaged by conspecifics, which differs from earlier studies. A comparison of HIPVs emitted after damage by T. absoluta and T. vaporariorum revealed differences in up- or down-regulation, as well as significant variations in specific compounds (12 for T. absoluta and 26 for T. vaporariorum damaged-plants). Only two compounds, β-caryophyllene and tetradecane, significantly varied because of damage by either herbivore, in line with the overall variation of the HIPV blend. Differences in HIPVs and herbivore preferences may be attributed to the distinct feeding habits of both herbivores, which activate different defensive pathways in plants. The plant's challenge in simultaneously activating both defensive pathways may explain the preference for heterospecific damaged plants found in this study, which are also in line with our own observations in greenhouses.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"725-741"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Better Together: Volatile-Mediated Intraguild Effects on the Preference of Tuta absoluta and Trialeurodes vaporariorum for Tomato Plants.\",\"authors\":\"F Rodrigo, A P Burgueño, A González, C Rossini\",\"doi\":\"10.1007/s10886-023-01458-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-herbivore interactions have been extensively studied in tomato plants and their most common pests. Tomato plant chemical defenses, both constitutive and inducible, play a role in mediating these interactions. Damaged tomato plants alter their volatile profiles, affecting herbivore preferences between undamaged and damaged plants. However, previous studies on tomato volatiles and herbivore preferences have yielded conflicting results, both in the volatile chemistry itself as well as in the attraction/repellent herbivore response. This study revisits the volatile-mediated interactions between tomato plants and two of their main herbivores: the leafminer Tuta absoluta and the whitefly Trialeurodes vaporariorum. Tomato plant volatiles were analyzed before and after damage by each of these herbivores, and the preference for oviposition (T. absoluta) and settling (T. vaporariorum) on undamaged and damaged plants was assessed both after conspecific and heterospecific damage. We found that both insects consistently preferred damaged plants over undamaged plants. The emission of herbivore-induced plant volatiles (HIPVs) increased after T. absoluta damage but decreased after T. vaporariorum damage. While some of our findings are in line with previous reports, T. absoluta preferred to oviposit on plants damaged by conspecifics, which differs from earlier studies. A comparison of HIPVs emitted after damage by T. absoluta and T. vaporariorum revealed differences in up- or down-regulation, as well as significant variations in specific compounds (12 for T. absoluta and 26 for T. vaporariorum damaged-plants). Only two compounds, β-caryophyllene and tetradecane, significantly varied because of damage by either herbivore, in line with the overall variation of the HIPV blend. Differences in HIPVs and herbivore preferences may be attributed to the distinct feeding habits of both herbivores, which activate different defensive pathways in plants. The plant's challenge in simultaneously activating both defensive pathways may explain the preference for heterospecific damaged plants found in this study, which are also in line with our own observations in greenhouses.</p>\",\"PeriodicalId\":15346,\"journal\":{\"name\":\"Journal of Chemical Ecology\",\"volume\":\" \",\"pages\":\"725-741\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10886-023-01458-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-023-01458-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Better Together: Volatile-Mediated Intraguild Effects on the Preference of Tuta absoluta and Trialeurodes vaporariorum for Tomato Plants.
Plant-herbivore interactions have been extensively studied in tomato plants and their most common pests. Tomato plant chemical defenses, both constitutive and inducible, play a role in mediating these interactions. Damaged tomato plants alter their volatile profiles, affecting herbivore preferences between undamaged and damaged plants. However, previous studies on tomato volatiles and herbivore preferences have yielded conflicting results, both in the volatile chemistry itself as well as in the attraction/repellent herbivore response. This study revisits the volatile-mediated interactions between tomato plants and two of their main herbivores: the leafminer Tuta absoluta and the whitefly Trialeurodes vaporariorum. Tomato plant volatiles were analyzed before and after damage by each of these herbivores, and the preference for oviposition (T. absoluta) and settling (T. vaporariorum) on undamaged and damaged plants was assessed both after conspecific and heterospecific damage. We found that both insects consistently preferred damaged plants over undamaged plants. The emission of herbivore-induced plant volatiles (HIPVs) increased after T. absoluta damage but decreased after T. vaporariorum damage. While some of our findings are in line with previous reports, T. absoluta preferred to oviposit on plants damaged by conspecifics, which differs from earlier studies. A comparison of HIPVs emitted after damage by T. absoluta and T. vaporariorum revealed differences in up- or down-regulation, as well as significant variations in specific compounds (12 for T. absoluta and 26 for T. vaporariorum damaged-plants). Only two compounds, β-caryophyllene and tetradecane, significantly varied because of damage by either herbivore, in line with the overall variation of the HIPV blend. Differences in HIPVs and herbivore preferences may be attributed to the distinct feeding habits of both herbivores, which activate different defensive pathways in plants. The plant's challenge in simultaneously activating both defensive pathways may explain the preference for heterospecific damaged plants found in this study, which are also in line with our own observations in greenhouses.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.