饮用水处理污泥通过吸附/光-芬顿联合工艺降解水中亚甲基蓝的能力。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 Epub Date: 2023-11-10 DOI:10.1080/10934529.2023.2277622
Zaina Izghri, Karima Ennaciri, Ghizlane Enaime, Chaima Sekkouri, Fatima Ezzahra Yaacoubi, Lhoussaine Chahid, Layla El Gaini, Abdelaziz Bacaoui, Abdelrani Yaacoubi
{"title":"饮用水处理污泥通过吸附/光-芬顿联合工艺降解水中亚甲基蓝的能力。","authors":"Zaina Izghri, Karima Ennaciri, Ghizlane Enaime, Chaima Sekkouri, Fatima Ezzahra Yaacoubi, Lhoussaine Chahid, Layla El Gaini, Abdelaziz Bacaoui, Abdelrani Yaacoubi","doi":"10.1080/10934529.2023.2277622","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, drinking water treatment sludge (DWTS) was reused as a catalyst in advanced oxidation processes for the removal of methylene blue (MB) from aqueous solutions. After determining their chemical and mineralogical compositions by X-ray Powder Diffraction (XRD), BET surface area, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), Inductively Coupled Plasma (ICP), and FT-IR spectra. DWTS has been used as a heterogeneous photo Fenton-Like catalyst for the oxidation of MB under different parameters, including pH (3-6), H<sub>2</sub>O<sub>2</sub> concentration (9.79-29.37 mM), and dose (1-2.5 g/L). The results showed that within 180 min and under UV light irradiation, more than 86% of MB having a concentration of 50 mg/L were removed using a catalyst loading of 1.5 g/L, a H<sub>2</sub>O<sub>2</sub> dosage of 23.17 mM and a solution pH of 5. The DWTS has a satisfactory stability as the catalyst is stable and have very less iron leaching property.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ability of drinking water treatment sludge to degrade methylene blue in water through combined adsorption/photo Fenton-like process.\",\"authors\":\"Zaina Izghri, Karima Ennaciri, Ghizlane Enaime, Chaima Sekkouri, Fatima Ezzahra Yaacoubi, Lhoussaine Chahid, Layla El Gaini, Abdelaziz Bacaoui, Abdelrani Yaacoubi\",\"doi\":\"10.1080/10934529.2023.2277622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, drinking water treatment sludge (DWTS) was reused as a catalyst in advanced oxidation processes for the removal of methylene blue (MB) from aqueous solutions. After determining their chemical and mineralogical compositions by X-ray Powder Diffraction (XRD), BET surface area, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), Inductively Coupled Plasma (ICP), and FT-IR spectra. DWTS has been used as a heterogeneous photo Fenton-Like catalyst for the oxidation of MB under different parameters, including pH (3-6), H<sub>2</sub>O<sub>2</sub> concentration (9.79-29.37 mM), and dose (1-2.5 g/L). The results showed that within 180 min and under UV light irradiation, more than 86% of MB having a concentration of 50 mg/L were removed using a catalyst loading of 1.5 g/L, a H<sub>2</sub>O<sub>2</sub> dosage of 23.17 mM and a solution pH of 5. The DWTS has a satisfactory stability as the catalyst is stable and have very less iron leaching property.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2277622\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2277622","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,饮用水处理污泥(DWTS)被重新用作高级氧化过程中去除水溶液中亚甲基蓝(MB)的催化剂。通过X射线粉末衍射(XRD)、BET表面积、扫描电子显微镜(SEM/EDS)、电感耦合等离子体(ICP)和FT-IR光谱测定了它们的化学和矿物学组成。DWTS已被用作非均相类Fenton光催化剂,用于在不同参数下氧化MB,包括pH(3-6)、H2O2浓度(9.79-29.37 mM)和剂量(1-2.5 g/L)。结果显示,在180 分钟,在紫外线照射下,超过86%的MB浓度为50 使用1.5的催化剂负载量除去mg/L g/L,H2O2用量为23.17 mM和溶液pH为5。DWTS具有令人满意的稳定性,因为催化剂是稳定的并且具有非常低的铁浸出性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The ability of drinking water treatment sludge to degrade methylene blue in water through combined adsorption/photo Fenton-like process.

In the present study, drinking water treatment sludge (DWTS) was reused as a catalyst in advanced oxidation processes for the removal of methylene blue (MB) from aqueous solutions. After determining their chemical and mineralogical compositions by X-ray Powder Diffraction (XRD), BET surface area, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), Inductively Coupled Plasma (ICP), and FT-IR spectra. DWTS has been used as a heterogeneous photo Fenton-Like catalyst for the oxidation of MB under different parameters, including pH (3-6), H2O2 concentration (9.79-29.37 mM), and dose (1-2.5 g/L). The results showed that within 180 min and under UV light irradiation, more than 86% of MB having a concentration of 50 mg/L were removed using a catalyst loading of 1.5 g/L, a H2O2 dosage of 23.17 mM and a solution pH of 5. The DWTS has a satisfactory stability as the catalyst is stable and have very less iron leaching property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1