Sophie Nader, Esma Karlovich, Etty P Cortes, Ricardo Insausti, Gregory Meloni, Michelle Jacobs, John F Crary, Susan Morgello
{"title":"人类免疫缺陷病毒感染者和高危人群的海马tau病变预测因素。","authors":"Sophie Nader, Esma Karlovich, Etty P Cortes, Ricardo Insausti, Gregory Meloni, Michelle Jacobs, John F Crary, Susan Morgello","doi":"10.1007/s13365-023-01181-9","DOIUrl":null,"url":null,"abstract":"<p><p>Combination antiretroviral therapy (cART) has extended lifespans of people living with HIV (PWH), increasing both the risk for age-related neuropathologies and the importance of distinguishing effects of HIV and its comorbidities from neurodegenerative disorders. The accumulation of hyperphosphorylated tau (p-tau) in hippocampus is a common degenerative change, with specific patterns of hippocampal subfield vulnerability observed in different disease contexts. Currently, associations between chronic HIV, its comorbidities, and p-tau burden and distribution in the hippocampus are unexplored. We used immunohistochemistry with antibody AT8 to analyze hippocampal p-tau in brain tissues of PWH (n = 71) and HIV negative controls (n = 25), for whom comprehensive clinical data were available. Using a morphology-based neuroanatomical segmentation protocol, we annotated digital slide images to measure percentage p-tau areas in the hippocampus and its subfields. Factors predicting p-tau burden and distribution were identified in univariate analyses, and those with significance at p ≤ 0.100 were advanced to multivariable regression. The patient sample had a mean age of 61.5 years. Age predicted overall hippocampal p-tau burden. Subfield p-tau predictors were for Cornu Ammonis (CA)1, age; for CA2 and subiculum, seizure history; for CA3, seizure history and head trauma; and for CA4/dentate, history of hepatitis C virus (HCV) infection. In this autopsy sample, hippocampal p-tau burden and distribution were not predicted by HIV, viral load, or immunologic status, with viral effects limited to associations between HCV and CA4/dentate vulnerability. Hippocampal p-tau pathologies in cART-era PWH appear to reflect age and comorbidities, but not direct effects of HIV infection.</p>","PeriodicalId":16665,"journal":{"name":"Journal of NeuroVirology","volume":" ","pages":"647-657"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictors of hippocampal tauopathy in people with and at risk for human immunodeficiency virus infection.\",\"authors\":\"Sophie Nader, Esma Karlovich, Etty P Cortes, Ricardo Insausti, Gregory Meloni, Michelle Jacobs, John F Crary, Susan Morgello\",\"doi\":\"10.1007/s13365-023-01181-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combination antiretroviral therapy (cART) has extended lifespans of people living with HIV (PWH), increasing both the risk for age-related neuropathologies and the importance of distinguishing effects of HIV and its comorbidities from neurodegenerative disorders. The accumulation of hyperphosphorylated tau (p-tau) in hippocampus is a common degenerative change, with specific patterns of hippocampal subfield vulnerability observed in different disease contexts. Currently, associations between chronic HIV, its comorbidities, and p-tau burden and distribution in the hippocampus are unexplored. We used immunohistochemistry with antibody AT8 to analyze hippocampal p-tau in brain tissues of PWH (n = 71) and HIV negative controls (n = 25), for whom comprehensive clinical data were available. Using a morphology-based neuroanatomical segmentation protocol, we annotated digital slide images to measure percentage p-tau areas in the hippocampus and its subfields. Factors predicting p-tau burden and distribution were identified in univariate analyses, and those with significance at p ≤ 0.100 were advanced to multivariable regression. The patient sample had a mean age of 61.5 years. Age predicted overall hippocampal p-tau burden. Subfield p-tau predictors were for Cornu Ammonis (CA)1, age; for CA2 and subiculum, seizure history; for CA3, seizure history and head trauma; and for CA4/dentate, history of hepatitis C virus (HCV) infection. In this autopsy sample, hippocampal p-tau burden and distribution were not predicted by HIV, viral load, or immunologic status, with viral effects limited to associations between HCV and CA4/dentate vulnerability. Hippocampal p-tau pathologies in cART-era PWH appear to reflect age and comorbidities, but not direct effects of HIV infection.</p>\",\"PeriodicalId\":16665,\"journal\":{\"name\":\"Journal of NeuroVirology\",\"volume\":\" \",\"pages\":\"647-657\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroVirology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13365-023-01181-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroVirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13365-023-01181-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Predictors of hippocampal tauopathy in people with and at risk for human immunodeficiency virus infection.
Combination antiretroviral therapy (cART) has extended lifespans of people living with HIV (PWH), increasing both the risk for age-related neuropathologies and the importance of distinguishing effects of HIV and its comorbidities from neurodegenerative disorders. The accumulation of hyperphosphorylated tau (p-tau) in hippocampus is a common degenerative change, with specific patterns of hippocampal subfield vulnerability observed in different disease contexts. Currently, associations between chronic HIV, its comorbidities, and p-tau burden and distribution in the hippocampus are unexplored. We used immunohistochemistry with antibody AT8 to analyze hippocampal p-tau in brain tissues of PWH (n = 71) and HIV negative controls (n = 25), for whom comprehensive clinical data were available. Using a morphology-based neuroanatomical segmentation protocol, we annotated digital slide images to measure percentage p-tau areas in the hippocampus and its subfields. Factors predicting p-tau burden and distribution were identified in univariate analyses, and those with significance at p ≤ 0.100 were advanced to multivariable regression. The patient sample had a mean age of 61.5 years. Age predicted overall hippocampal p-tau burden. Subfield p-tau predictors were for Cornu Ammonis (CA)1, age; for CA2 and subiculum, seizure history; for CA3, seizure history and head trauma; and for CA4/dentate, history of hepatitis C virus (HCV) infection. In this autopsy sample, hippocampal p-tau burden and distribution were not predicted by HIV, viral load, or immunologic status, with viral effects limited to associations between HCV and CA4/dentate vulnerability. Hippocampal p-tau pathologies in cART-era PWH appear to reflect age and comorbidities, but not direct effects of HIV infection.
期刊介绍:
The Journal of NeuroVirology (JNV) provides a unique platform for the publication of high-quality basic science and clinical studies on the molecular biology and pathogenesis of viral infections of the nervous system, and for reporting on the development of novel therapeutic strategies using neurotropic viral vectors. The Journal also emphasizes publication of non-viral infections that affect the central nervous system. The Journal publishes original research articles, reviews, case reports, coverage of various scientific meetings, along with supplements and special issues on selected subjects.
The Journal is currently accepting submissions of original work from the following basic and clinical research areas: Aging & Neurodegeneration, Apoptosis, CNS Signal Transduction, Emerging CNS Infections, Molecular Virology, Neural-Immune Interaction, Novel Diagnostics, Novel Therapeutics, Stem Cell Biology, Transmissable Encephalopathies/Prion, Vaccine Development, Viral Genomics, Viral Neurooncology, Viral Neurochemistry, Viral Neuroimmunology, Viral Neuropharmacology.