求助PDF
{"title":"小麦白粉菌的突变揭示了一个控制NLR和串联激酶介导的免疫的单一基因。","authors":"Zoe Bernasconi, Ursin Stirnemann, Matthias Heuberger, Alexandros G Sotiropoulos, Johannes Graf, Thomas Wicker, Beat Keller, Javier Sánchez-Martín","doi":"10.1094/MPMI-09-23-0136-FI","DOIUrl":null,"url":null,"abstract":"<p><p><i>Blumeria graminis</i> f. sp. <i>tritici</i> (<i>Bgt</i>) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (<i>Pm</i>) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify <i>Avr</i> genes in <i>Bgt</i> by generating gain-of-virulence mutants on <i>Pm</i> genes. We first identified six <i>Bgt</i> mutants with gain of virulence on <i>Pm3b</i> and <i>Pm3c.</i> They all had point mutations, deletions or insertions of transposable elements within the corresponding <i>AvrPm3<sup>b2/c2</sup></i> gene or its promoter region. We further selected six mutants on <i>Pm3a</i>, aiming to identify the yet unknown AvrPm3<sup>a3</sup> recognized by Pm3a, in addition to the previously described AvrPm3<sup>a2/f2</sup>. Surprisingly, <i>Pm3a</i> virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene <i>WTK4.</i> No virulence toward 11 additional <i>R</i> genes tested was observed, indicating that the gain of virulence was specific for <i>Pm3a</i> and <i>WTK4</i>. Several independently obtained <i>Pm3a-WTK4</i> mutants have mutations in <i>Bgt-646</i>, a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that <i>Bgt-646</i> regulates a subset of effector genes. We conclude that <i>Bgt-646</i> is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":"264-276"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutagenesis of Wheat Powdery Mildew Reveals a Single Gene Controlling Both NLR and Tandem Kinase-Mediated Immunity.\",\"authors\":\"Zoe Bernasconi, Ursin Stirnemann, Matthias Heuberger, Alexandros G Sotiropoulos, Johannes Graf, Thomas Wicker, Beat Keller, Javier Sánchez-Martín\",\"doi\":\"10.1094/MPMI-09-23-0136-FI\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Blumeria graminis</i> f. sp. <i>tritici</i> (<i>Bgt</i>) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (<i>Pm</i>) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify <i>Avr</i> genes in <i>Bgt</i> by generating gain-of-virulence mutants on <i>Pm</i> genes. We first identified six <i>Bgt</i> mutants with gain of virulence on <i>Pm3b</i> and <i>Pm3c.</i> They all had point mutations, deletions or insertions of transposable elements within the corresponding <i>AvrPm3<sup>b2/c2</sup></i> gene or its promoter region. We further selected six mutants on <i>Pm3a</i>, aiming to identify the yet unknown AvrPm3<sup>a3</sup> recognized by Pm3a, in addition to the previously described AvrPm3<sup>a2/f2</sup>. Surprisingly, <i>Pm3a</i> virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene <i>WTK4.</i> No virulence toward 11 additional <i>R</i> genes tested was observed, indicating that the gain of virulence was specific for <i>Pm3a</i> and <i>WTK4</i>. Several independently obtained <i>Pm3a-WTK4</i> mutants have mutations in <i>Bgt-646</i>, a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that <i>Bgt-646</i> regulates a subset of effector genes. We conclude that <i>Bgt-646</i> is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>\",\"PeriodicalId\":19009,\"journal\":{\"name\":\"Molecular Plant-microbe Interactions\",\"volume\":\" \",\"pages\":\"264-276\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant-microbe Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1094/MPMI-09-23-0136-FI\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-09-23-0136-FI","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用