Sprague-Dawley大鼠肺中规则和薄荷味小雪茄烟雾的不均匀沉积。

IF 7.2 1区 医学 Q1 TOXICOLOGY Particle and Fibre Toxicology Pub Date : 2023-11-06 DOI:10.1186/s12989-023-00554-6
Kaisen Lin, Christopher Wallis, Emily M Wong, Patricia Edwards, Austin Cole, Laura Van Winkle, Anthony S Wexler
{"title":"Sprague-Dawley大鼠肺中规则和薄荷味小雪茄烟雾的不均匀沉积。","authors":"Kaisen Lin, Christopher Wallis, Emily M Wong, Patricia Edwards, Austin Cole, Laura Van Winkle, Anthony S Wexler","doi":"10.1186/s12989-023-00554-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quantifying the dose and distribution of tobacco smoke in the respiratory system is critical for understanding its toxicity, addiction potential, and health impacts. Epidemiologic studies indicate that the incidence of lung tumors varies across different lung regions, suggesting there may be a heterogeneous deposition of smoke particles leading to greater health risks in specific regions. Despite this, few studies have examined the lobar spatial distribution of inhaled particles from tobacco smoke. This gap in knowledge, coupled with the growing popularity of little cigars among youth, underscores the need for additional research with little cigars.</p><p><strong>Results: </strong>In our study, we analyzed the lobar deposition in rat lungs of smoke particles from combusted regular and mentholated Swisher Sweets little cigars. Twelve-week-old male and female Sprague-Dawley rats were exposed to smoke particles at a concentration of 84 ± 5 mg/m<sup>3</sup> for 2 h, after which individual lung lobes were examined. We utilized Inductively Coupled Plasma Mass Spectrometry to quantify lobar chromium concentrations, serving as a smoke particle tracer. Our findings demonstrated an overall higher particle deposition from regular little cigars than from the mentholated ones. Higher particle deposition fraction was observed in the left and caudal lobes than other lobes. We also observed sex-based differences in the normalized deposition fractions among lobes. Animal study results were compared with the multi-path particle dosimetry (MPPD) model predictions, which showed that the model overestimated particle deposition in certain lung regions.</p><p><strong>Conclusions: </strong>Our findings revealed that the particle deposition varied between different little cigar products. The results demonstrated a heterogenous deposition pattern, with higher particle deposition observed in the left and caudal lobes, especially with the mentholated little cigars. Additionally, we identified disparities between our measurements and the MPPD model. This discrepancy highlights the need to enhance the accuracy of models before extrapolating animal study results to human lung deposition. Overall, our study provides valuable insights for estimating the dose of little cigars during smoking for toxicity research.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"42"},"PeriodicalIF":7.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous deposition of regular and mentholated little cigar smoke in the lungs of Sprague-Dawley rats.\",\"authors\":\"Kaisen Lin, Christopher Wallis, Emily M Wong, Patricia Edwards, Austin Cole, Laura Van Winkle, Anthony S Wexler\",\"doi\":\"10.1186/s12989-023-00554-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Quantifying the dose and distribution of tobacco smoke in the respiratory system is critical for understanding its toxicity, addiction potential, and health impacts. Epidemiologic studies indicate that the incidence of lung tumors varies across different lung regions, suggesting there may be a heterogeneous deposition of smoke particles leading to greater health risks in specific regions. Despite this, few studies have examined the lobar spatial distribution of inhaled particles from tobacco smoke. This gap in knowledge, coupled with the growing popularity of little cigars among youth, underscores the need for additional research with little cigars.</p><p><strong>Results: </strong>In our study, we analyzed the lobar deposition in rat lungs of smoke particles from combusted regular and mentholated Swisher Sweets little cigars. Twelve-week-old male and female Sprague-Dawley rats were exposed to smoke particles at a concentration of 84 ± 5 mg/m<sup>3</sup> for 2 h, after which individual lung lobes were examined. We utilized Inductively Coupled Plasma Mass Spectrometry to quantify lobar chromium concentrations, serving as a smoke particle tracer. Our findings demonstrated an overall higher particle deposition from regular little cigars than from the mentholated ones. Higher particle deposition fraction was observed in the left and caudal lobes than other lobes. We also observed sex-based differences in the normalized deposition fractions among lobes. Animal study results were compared with the multi-path particle dosimetry (MPPD) model predictions, which showed that the model overestimated particle deposition in certain lung regions.</p><p><strong>Conclusions: </strong>Our findings revealed that the particle deposition varied between different little cigar products. The results demonstrated a heterogenous deposition pattern, with higher particle deposition observed in the left and caudal lobes, especially with the mentholated little cigars. Additionally, we identified disparities between our measurements and the MPPD model. This discrepancy highlights the need to enhance the accuracy of models before extrapolating animal study results to human lung deposition. Overall, our study provides valuable insights for estimating the dose of little cigars during smoking for toxicity research.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":\"20 1\",\"pages\":\"42\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-023-00554-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00554-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:量化烟草烟雾在呼吸系统中的剂量和分布对于了解其毒性、成瘾潜力和健康影响至关重要。流行病学研究表明,不同肺部区域的肺部肿瘤发病率不同,这表明烟雾颗粒的异质沉积可能会导致特定区域的健康风险更大。尽管如此,很少有研究检测烟草烟雾中吸入颗粒物的叶空间分布。这种知识差距,加上小雪茄在年轻人中越来越受欢迎,凸显了对小雪茄进行更多研究的必要性。结果:在我们的研究中,我们分析了燃烧过的普通和薄荷味Swisher Sweets小雪茄烟雾颗粒在大鼠肺中的叶沉积。12周大的雄性和雌性Sprague-Dawley大鼠暴露于浓度为84的烟雾颗粒中 ± 5mg/m3持续2小时,之后检查单个肺叶。我们使用电感耦合等离子体质谱法来量化大叶铬的浓度,作为烟雾颗粒示踪剂。我们的研究结果表明,普通小雪茄的颗粒沉积量总体上高于薄荷雪茄。在左叶和尾叶中观察到的颗粒沉积分数高于其他叶。我们还观察到各叶之间标准化沉积分数的性别差异。动物研究结果与多路径粒子剂量测定(MPPD)模型预测进行了比较,结果表明该模型高估了某些肺部区域的粒子沉积。结论:我们的研究结果表明,不同小雪茄产品的颗粒沉积不同。结果表明,沉积模式不均匀,在左叶和尾叶观察到更高的颗粒沉积,尤其是薄荷醇小雪茄。此外,我们还发现了我们的测量值与MPPD模型之间的差异。这种差异突出表明,在将动物研究结果外推到人类肺部沉积之前,需要提高模型的准确性。总的来说,我们的研究为估计吸烟期间小雪茄的剂量以进行毒性研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous deposition of regular and mentholated little cigar smoke in the lungs of Sprague-Dawley rats.

Background: Quantifying the dose and distribution of tobacco smoke in the respiratory system is critical for understanding its toxicity, addiction potential, and health impacts. Epidemiologic studies indicate that the incidence of lung tumors varies across different lung regions, suggesting there may be a heterogeneous deposition of smoke particles leading to greater health risks in specific regions. Despite this, few studies have examined the lobar spatial distribution of inhaled particles from tobacco smoke. This gap in knowledge, coupled with the growing popularity of little cigars among youth, underscores the need for additional research with little cigars.

Results: In our study, we analyzed the lobar deposition in rat lungs of smoke particles from combusted regular and mentholated Swisher Sweets little cigars. Twelve-week-old male and female Sprague-Dawley rats were exposed to smoke particles at a concentration of 84 ± 5 mg/m3 for 2 h, after which individual lung lobes were examined. We utilized Inductively Coupled Plasma Mass Spectrometry to quantify lobar chromium concentrations, serving as a smoke particle tracer. Our findings demonstrated an overall higher particle deposition from regular little cigars than from the mentholated ones. Higher particle deposition fraction was observed in the left and caudal lobes than other lobes. We also observed sex-based differences in the normalized deposition fractions among lobes. Animal study results were compared with the multi-path particle dosimetry (MPPD) model predictions, which showed that the model overestimated particle deposition in certain lung regions.

Conclusions: Our findings revealed that the particle deposition varied between different little cigar products. The results demonstrated a heterogenous deposition pattern, with higher particle deposition observed in the left and caudal lobes, especially with the mentholated little cigars. Additionally, we identified disparities between our measurements and the MPPD model. This discrepancy highlights the need to enhance the accuracy of models before extrapolating animal study results to human lung deposition. Overall, our study provides valuable insights for estimating the dose of little cigars during smoking for toxicity research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
4.00%
发文量
69
审稿时长
6 months
期刊介绍: Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.
期刊最新文献
Correction: Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Copper oxide nanoparticles exacerbate chronic obstructive pulmonary disease by activating the TXNIP-NLRP3 signaling pathway. Cell-nanoparticle stickiness and dose delivery in a multi-model in silico platform: DosiGUI. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Current understanding of the impact of United States military airborne hazards and burn pit exposures on respiratory health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1