{"title":"荷瘤宿主窦性巨噬细胞的功能障碍诱导对免疫疗法的耐药性。","authors":"Toshiki Anami, Cheng Pan, Yukio Fujiwara, Yoshihiro Komohara, Hiromu Yano, Yoichi Saito, Masamichi Sugimoto, Daiko Wakita, Takanobu Motoshima, Yoji Murakami, Junji Yatsuda, Naofumi Takahashi, Shinya Suzu, Kenichi Asano, Koji Tamada, Tomomi Kamba","doi":"10.1111/cas.16003","DOIUrl":null,"url":null,"abstract":"<p>Sinus macrophages in draining lymph nodes (DLNs) are involved in anti-tumor immune reactions. CD169 (Sialoadhesin, Siglec-1) is expressed on sinus macrophages and is considered a surrogate marker for the immunostimulatory phenotype of macrophages. In this study, the significance of sinus macrophages in immunotherapy was evaluated using mouse models. Treatment with anti-programmed death-ligand 1 (PD-L1) antibody suppressed the subcutaneous tumor growth of MC38 and E0771 cells but was not effective against MB49 and LLC tumors. Decreased cytotoxic T-lymphocyte (CTL) infiltration in tumor tissues and CD169 expression in sinus macrophages were observed in MB49 and LLC cells compared to corresponding parameters in MC38 and E0771 cells. The anti-tumor effects of the anti-PD-L1 antibody on MC38 and E0771 cells were abolished when sinus macrophages in DLNs were depleted, suggesting that sinus macrophages are involved in the therapeutic effect of the anti-PD-L1 antibody. Naringin activated sinus macrophages. Naringin inhibited tumor growth in MB49- and LLC-bearing mice but did not affect that in MC38- and E0771-bearing mice. The infiltration of CTLs in tumor tissues and their activation were increased by naringin, and this effect was impaired when sinus macrophages were depleted. Combination therapy with naringin and anti-PD-L1 antibody suppressed MB49 tumor growth. In conclusion, CD169-positive sinus macrophages in DLNs are critical for anti-tumor immune responses, and naringin suppresses tumor growth by activating CD169-positive sinus macrophages and anti-tumor CTL responses. The activation status of sinus macrophages has been suggested to differ among tumor models, and this should be investigated in future studies.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 1","pages":"59-69"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823272/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dysfunction of sinus macrophages in tumor-bearing host induces resistance to immunotherapy\",\"authors\":\"Toshiki Anami, Cheng Pan, Yukio Fujiwara, Yoshihiro Komohara, Hiromu Yano, Yoichi Saito, Masamichi Sugimoto, Daiko Wakita, Takanobu Motoshima, Yoji Murakami, Junji Yatsuda, Naofumi Takahashi, Shinya Suzu, Kenichi Asano, Koji Tamada, Tomomi Kamba\",\"doi\":\"10.1111/cas.16003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sinus macrophages in draining lymph nodes (DLNs) are involved in anti-tumor immune reactions. CD169 (Sialoadhesin, Siglec-1) is expressed on sinus macrophages and is considered a surrogate marker for the immunostimulatory phenotype of macrophages. In this study, the significance of sinus macrophages in immunotherapy was evaluated using mouse models. Treatment with anti-programmed death-ligand 1 (PD-L1) antibody suppressed the subcutaneous tumor growth of MC38 and E0771 cells but was not effective against MB49 and LLC tumors. Decreased cytotoxic T-lymphocyte (CTL) infiltration in tumor tissues and CD169 expression in sinus macrophages were observed in MB49 and LLC cells compared to corresponding parameters in MC38 and E0771 cells. The anti-tumor effects of the anti-PD-L1 antibody on MC38 and E0771 cells were abolished when sinus macrophages in DLNs were depleted, suggesting that sinus macrophages are involved in the therapeutic effect of the anti-PD-L1 antibody. Naringin activated sinus macrophages. Naringin inhibited tumor growth in MB49- and LLC-bearing mice but did not affect that in MC38- and E0771-bearing mice. The infiltration of CTLs in tumor tissues and their activation were increased by naringin, and this effect was impaired when sinus macrophages were depleted. Combination therapy with naringin and anti-PD-L1 antibody suppressed MB49 tumor growth. In conclusion, CD169-positive sinus macrophages in DLNs are critical for anti-tumor immune responses, and naringin suppresses tumor growth by activating CD169-positive sinus macrophages and anti-tumor CTL responses. The activation status of sinus macrophages has been suggested to differ among tumor models, and this should be investigated in future studies.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 1\",\"pages\":\"59-69\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823272/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16003\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Dysfunction of sinus macrophages in tumor-bearing host induces resistance to immunotherapy
Sinus macrophages in draining lymph nodes (DLNs) are involved in anti-tumor immune reactions. CD169 (Sialoadhesin, Siglec-1) is expressed on sinus macrophages and is considered a surrogate marker for the immunostimulatory phenotype of macrophages. In this study, the significance of sinus macrophages in immunotherapy was evaluated using mouse models. Treatment with anti-programmed death-ligand 1 (PD-L1) antibody suppressed the subcutaneous tumor growth of MC38 and E0771 cells but was not effective against MB49 and LLC tumors. Decreased cytotoxic T-lymphocyte (CTL) infiltration in tumor tissues and CD169 expression in sinus macrophages were observed in MB49 and LLC cells compared to corresponding parameters in MC38 and E0771 cells. The anti-tumor effects of the anti-PD-L1 antibody on MC38 and E0771 cells were abolished when sinus macrophages in DLNs were depleted, suggesting that sinus macrophages are involved in the therapeutic effect of the anti-PD-L1 antibody. Naringin activated sinus macrophages. Naringin inhibited tumor growth in MB49- and LLC-bearing mice but did not affect that in MC38- and E0771-bearing mice. The infiltration of CTLs in tumor tissues and their activation were increased by naringin, and this effect was impaired when sinus macrophages were depleted. Combination therapy with naringin and anti-PD-L1 antibody suppressed MB49 tumor growth. In conclusion, CD169-positive sinus macrophages in DLNs are critical for anti-tumor immune responses, and naringin suppresses tumor growth by activating CD169-positive sinus macrophages and anti-tumor CTL responses. The activation status of sinus macrophages has been suggested to differ among tumor models, and this should be investigated in future studies.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.