Mei Meng, Yan Guo, Yu Chen, Xu Li, Bin Zhang, Zhijia Xie, Juntao Liu, Zhe Zhao, Yuxi Liu, Tong Zhang, Yingnan Qiao, Bingxue Shang, Quansheng Zhou
{"title":"癌症/testis-45A1通过激活致癌SRC和下游信号通路,促进宫颈癌症细胞的肿瘤发生和耐药性。","authors":"Mei Meng, Yan Guo, Yu Chen, Xu Li, Bin Zhang, Zhijia Xie, Juntao Liu, Zhe Zhao, Yuxi Liu, Tong Zhang, Yingnan Qiao, Bingxue Shang, Quansheng Zhou","doi":"10.1007/s13402-023-00891-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature.</p><p><strong>Purpose: </strong>The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy.</p><p><strong>Methods: </strong>The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting.</p><p><strong>Results: </strong>CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine.</p><p><strong>Conclusion: </strong>CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"657-676"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090944/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cancer/testis-45A1 promotes cervical cancer cell tumorigenesis and drug resistance by activating oncogenic SRC and downstream signaling pathways.\",\"authors\":\"Mei Meng, Yan Guo, Yu Chen, Xu Li, Bin Zhang, Zhijia Xie, Juntao Liu, Zhe Zhao, Yuxi Liu, Tong Zhang, Yingnan Qiao, Bingxue Shang, Quansheng Zhou\",\"doi\":\"10.1007/s13402-023-00891-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature.</p><p><strong>Purpose: </strong>The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy.</p><p><strong>Methods: </strong>The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting.</p><p><strong>Results: </strong>CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine.</p><p><strong>Conclusion: </strong>CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"657-676\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090944/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00891-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00891-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cancer/testis-45A1 promotes cervical cancer cell tumorigenesis and drug resistance by activating oncogenic SRC and downstream signaling pathways.
Background: Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature.
Purpose: The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy.
Methods: The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting.
Results: CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine.
Conclusion: CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.