日本脑炎病毒NS2A第66位核苷酸与病毒的毒力和增殖有关。

IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Virus Genes Pub Date : 2024-02-01 Epub Date: 2023-11-08 DOI:10.1007/s11262-023-02036-5
Ning Tan, Chen Chen, Yang Ren, Rong Huang, Zhuang Zhu, Kui Xu, Xiaoyao Yang, Jian Yang, Lei Yuan
{"title":"日本脑炎病毒NS2A第66位核苷酸与病毒的毒力和增殖有关。","authors":"Ning Tan, Chen Chen, Yang Ren, Rong Huang, Zhuang Zhu, Kui Xu, Xiaoyao Yang, Jian Yang, Lei Yuan","doi":"10.1007/s11262-023-02036-5","DOIUrl":null,"url":null,"abstract":"<p><p>Most wild strains of Japanese encephalitis virus (JEV) produce NS1' protein, which plays an important role in viral infection and immune escape. The G66A nucleotide mutation in NS2A gene of the wild strain SA14 prevented the ribosomal frameshift that prevented the production of NS1' protein, thus reduced the virulence. In this study, the 66th nucleotide of the NS2A gene of SA14 was mutated into A, U or C, respectively. Both the G66U and G66C mutations cause the E22D mutation of the NS2A protein. Subsequently, the expression of NS1' protein, plaque size, replication ability, and virulence to mice of the three mutant strains were examined. The results showed that the three mutant viruses could not express NS1' protein, and their proliferation ability in nerve cells and virulence to mice were significantly reduced. In addition, the SA14(G66C) was less virulent than the other two mutated viruses. Our results indicate that only when G is the 66th nucleotide of NS2A, the JEV can produce NS1' protein, which affects the virulence.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleotide at position 66 of NS2A in Japanese encephalitis virus is associated with the virulence and proliferation of virus.\",\"authors\":\"Ning Tan, Chen Chen, Yang Ren, Rong Huang, Zhuang Zhu, Kui Xu, Xiaoyao Yang, Jian Yang, Lei Yuan\",\"doi\":\"10.1007/s11262-023-02036-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most wild strains of Japanese encephalitis virus (JEV) produce NS1' protein, which plays an important role in viral infection and immune escape. The G66A nucleotide mutation in NS2A gene of the wild strain SA14 prevented the ribosomal frameshift that prevented the production of NS1' protein, thus reduced the virulence. In this study, the 66th nucleotide of the NS2A gene of SA14 was mutated into A, U or C, respectively. Both the G66U and G66C mutations cause the E22D mutation of the NS2A protein. Subsequently, the expression of NS1' protein, plaque size, replication ability, and virulence to mice of the three mutant strains were examined. The results showed that the three mutant viruses could not express NS1' protein, and their proliferation ability in nerve cells and virulence to mice were significantly reduced. In addition, the SA14(G66C) was less virulent than the other two mutated viruses. Our results indicate that only when G is the 66th nucleotide of NS2A, the JEV can produce NS1' protein, which affects the virulence.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-023-02036-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-023-02036-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

日本脑炎病毒(JEV)的大多数野生株都产生NS1'蛋白,该蛋白在病毒感染和免疫逃逸中起着重要作用。野生菌株SA14的NS2A基因中的G66A核苷酸突变阻止了阻止NS1’蛋白产生的核糖体移码,从而降低了毒力。在本研究中,SA14的NS2A基因的第66个核苷酸分别突变为A、U或C。G66U和G66C突变都引起NS2A蛋白的E22D突变。随后,检测了三种突变菌株的NS1’蛋白表达、菌斑大小、复制能力和对小鼠的毒力。结果表明,三种突变病毒均不能表达NS1’蛋白,其在神经细胞中的增殖能力和对小鼠的毒力均显著降低。此外,SA14(G66C)的毒力低于其他两种突变病毒。我们的结果表明,只有当G是NS2A的第66个核苷酸时,JEV才能产生NS1'蛋白,从而影响毒力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nucleotide at position 66 of NS2A in Japanese encephalitis virus is associated with the virulence and proliferation of virus.

Most wild strains of Japanese encephalitis virus (JEV) produce NS1' protein, which plays an important role in viral infection and immune escape. The G66A nucleotide mutation in NS2A gene of the wild strain SA14 prevented the ribosomal frameshift that prevented the production of NS1' protein, thus reduced the virulence. In this study, the 66th nucleotide of the NS2A gene of SA14 was mutated into A, U or C, respectively. Both the G66U and G66C mutations cause the E22D mutation of the NS2A protein. Subsequently, the expression of NS1' protein, plaque size, replication ability, and virulence to mice of the three mutant strains were examined. The results showed that the three mutant viruses could not express NS1' protein, and their proliferation ability in nerve cells and virulence to mice were significantly reduced. In addition, the SA14(G66C) was less virulent than the other two mutated viruses. Our results indicate that only when G is the 66th nucleotide of NS2A, the JEV can produce NS1' protein, which affects the virulence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virus Genes
Virus Genes 医学-病毒学
CiteScore
3.30
自引率
0.00%
发文量
76
审稿时长
3 months
期刊介绍: Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools. Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments. Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.
期刊最新文献
Isolation and identification of a pigeonpox virus strain and study on the integration of reticuloendotheliosis virus sequence. Molecular epidemiology and genetic evolution of avian influenza H5N1 subtype in Nigeria, 2006 to 2021. Characterization of the proteins encoded by a recently emerged cotton-infecting Polerovirus. Characterization of an envelope protein 118L in invertebrate iridescent virus 6 (IIV6). Identification of a novel monopartite begomovirus associated with leaf curl disease of Citharexylum spinosum in India.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1