穿心莲内酯减轻氧化低密度脂蛋白诱导的骨髓来源巨噬细胞中NLRP3炎症小体的激活,并减轻HFCCD诱导的小鼠动脉粥样硬化。

The American journal of Chinese medicine Pub Date : 2023-01-01 Epub Date: 2023-11-04 DOI:10.1142/S0192415X23500933
Chih-Chieh Chen, Chong-Kuei Lii, Kai-Li Liu, Yi-Ling Lin, Chia-Wen Lo, Chien-Chun Li, Ya-Chen Yang, Haw-Wen Chen
{"title":"穿心莲内酯减轻氧化低密度脂蛋白诱导的骨髓来源巨噬细胞中NLRP3炎症小体的激活,并减轻HFCCD诱导的小鼠动脉粥样硬化。","authors":"Chih-Chieh Chen, Chong-Kuei Lii, Kai-Li Liu, Yi-Ling Lin, Chia-Wen Lo, Chien-Chun Li, Ya-Chen Yang, Haw-Wen Chen","doi":"10.1142/S0192415X23500933","DOIUrl":null,"url":null,"abstract":"<p><p>Andrographolide (AND) is a bioactive component of the herb <i>Andrographis paniculata</i> and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. AND attenuated LPS/oxLDL-mediated foam cell formation, IL-1[Formula: see text] mRNA and protein (p37) expression, NLR family pyrin domain containing 3 (NLRP3) mRNA and protein expression, caspase-1 (p20) protein expression, and IL-1[Formula: see text] release in BMDMs. Treatment with oxLDL significantly induced protein and mRNA expression of CD36, lectin-like oxLDL receptor-1 (LOX-1), and scavenger receptor type A (SR-A), whereas pretreatment with AND significantly inhibited protein and mRNA expression of SR-A only. Treatment with oxLDL significantly induced ROS generation and Dil-oxLDL uptake; however, pretreatment with AND alleviated oxLDL-induced ROS generation and Dil-oxLDL uptake. HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Andrographolide Attenuates Oxidized LDL-Induced Activation of the NLRP3 Inflammasome in Bone Marrow-Derived Macrophages and Mitigates HFCCD-Induced Atherosclerosis in Mice.\",\"authors\":\"Chih-Chieh Chen, Chong-Kuei Lii, Kai-Li Liu, Yi-Ling Lin, Chia-Wen Lo, Chien-Chun Li, Ya-Chen Yang, Haw-Wen Chen\",\"doi\":\"10.1142/S0192415X23500933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Andrographolide (AND) is a bioactive component of the herb <i>Andrographis paniculata</i> and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. AND attenuated LPS/oxLDL-mediated foam cell formation, IL-1[Formula: see text] mRNA and protein (p37) expression, NLR family pyrin domain containing 3 (NLRP3) mRNA and protein expression, caspase-1 (p20) protein expression, and IL-1[Formula: see text] release in BMDMs. Treatment with oxLDL significantly induced protein and mRNA expression of CD36, lectin-like oxLDL receptor-1 (LOX-1), and scavenger receptor type A (SR-A), whereas pretreatment with AND significantly inhibited protein and mRNA expression of SR-A only. Treatment with oxLDL significantly induced ROS generation and Dil-oxLDL uptake; however, pretreatment with AND alleviated oxLDL-induced ROS generation and Dil-oxLDL uptake. HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.</p>\",\"PeriodicalId\":94221,\"journal\":{\"name\":\"The American journal of Chinese medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of Chinese medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X23500933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

穿心莲内酯(AND)是穿心莲的一种生物活性成分,也是一种著名的抗炎药。动脉粥样硬化是一种血管系统的慢性炎症性疾病,氧化低密度脂蛋白(oxLDL)被认为是动脉粥样硬化相关炎症的主要原因。本研究的目的是研究AND是否减轻oxLDL介导的泡沫细胞形成和饮食诱导的动脉粥样硬化(在喂食高脂肪、高胆固醇、高胆酸[HFCD]饮食的小鼠中)以及相关的潜在机制。AND减弱了LPS/oxLDL介导的泡沫细胞形成、IL-1【公式:见正文】mRNA和蛋白(p37)表达、NLR家族pyrin结构域包含3(NLRP3)mRNA和蛋白表达、胱天蛋白酶1(p20)蛋白表达和IL-1【配方:见正文)在BMDMs中的释放。oxLDL处理显著诱导CD36、凝集素样oxLDL受体-1(LOX-1)和清除剂受体A型(SR-A)的蛋白质和mRNA表达,而and预处理仅显著抑制SR-A的蛋白质和信使表达。oxLDL处理显著诱导ROS的产生和Dil-oxLDL的摄取;然而,用AND预处理减轻了oxLDL诱导的ROS的产生和Dil-oxLDL的摄取。HFCCD喂养显著增加了主动脉脂质积聚、ICAM-1表达和IL-1[公式:见正文]mRNA表达,以及血液中谷丙转氨酶(GPT)、总胆固醇和LDL-C的水平。AND联合给药减轻了主动脉脂质积聚、ICAM-1的蛋白表达、IL-1的mRNA表达[公式:见正文]和ICAM-1,以及GPT的血液水平。这些结果表明,AND缓解动脉粥样硬化的工作机制包括抑制泡沫细胞形成和NLRP3炎症小体依赖性血管炎症,分别通过降低SR-A表达和IL-1释放来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Andrographolide Attenuates Oxidized LDL-Induced Activation of the NLRP3 Inflammasome in Bone Marrow-Derived Macrophages and Mitigates HFCCD-Induced Atherosclerosis in Mice.

Andrographolide (AND) is a bioactive component of the herb Andrographis paniculata and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. AND attenuated LPS/oxLDL-mediated foam cell formation, IL-1[Formula: see text] mRNA and protein (p37) expression, NLR family pyrin domain containing 3 (NLRP3) mRNA and protein expression, caspase-1 (p20) protein expression, and IL-1[Formula: see text] release in BMDMs. Treatment with oxLDL significantly induced protein and mRNA expression of CD36, lectin-like oxLDL receptor-1 (LOX-1), and scavenger receptor type A (SR-A), whereas pretreatment with AND significantly inhibited protein and mRNA expression of SR-A only. Treatment with oxLDL significantly induced ROS generation and Dil-oxLDL uptake; however, pretreatment with AND alleviated oxLDL-induced ROS generation and Dil-oxLDL uptake. HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acupuncture: A Review of the Safety and Adverse Events and the Strategy of Potential Risk Prevention. Acacetin is a Promising Drug Candidate for Cardiovascular Diseases. Astragaloside I from Astragalus Attenuates Diabetic Kidney Disease by Regulating HDAC3/Klotho/TGF-β1 Loop. Bridging the Gap: A Comprehensive Study on Traditional Chinese Medicine Strategies for Managing Adult Irritable Bowel Syndrome. ERRATUM: Cytokine Storm in Acute Viral Respiratory Injury: Role of Qing-Fei-Pai-Du Decoction in Inhibiting the Infiltration of Neutrophils and Macrophages through TAK1/IKK/NF-κB Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1