{"title":"基于注意力增强金枪鱼群优化并行BiGRU的超视距机动意图识别","authors":"Xie Lei, Deng Shilin, Tang Shangqin, Huang Changqiang, Dong Kangsheng, Zhang Zhuoran","doi":"10.1007/s40747-023-01257-3","DOIUrl":null,"url":null,"abstract":"<p>This paper researches the problem of Beyond Visual Range (BVR) air combat maneuver intention recognition. To achieve efficient and accurate intention recognition, an Attention enhanced Tuna Swarm Optimization-Parallel Bidirectional Gated Recurrent Unit network (A-TSO-PBiGRU) is proposed, which constructs a novel Parallel BiGRU (PBiGRU). Firstly, PBiGRU has a parallel network structure, whose proportion of forward and backward network can be adjusted by forward coefficient and backward coefficient. Secondly, to achieve object-oriented adjustment of forward and backward coefficients, the tuna swarm optimization algorithm is introduced and the negative log-likelihood estimation loss function is used as the objective function, it realizes the dynamic combination of sequence guidance and reverse correction. Finally, the attention mechanism is used to obtain more useful information to improve the recognition accuracy. Through offline recognition experiment, it is proved that A-TSO-PBiGRU can effectively improve the convergence speed and recognition accuracy compared with GRU-related networks. Compared with the other six comparison algorithms, maneuver intention recognition accuracy also has significant advantages. In the online recognition experiment, maneuver intention recognition accuracy of A-TSO-PBiGRU is 93.7%, it shows excellent maneuver intention recognition ability.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"6 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond visual range maneuver intention recognition based on attention enhanced tuna swarm optimization parallel BiGRU\",\"authors\":\"Xie Lei, Deng Shilin, Tang Shangqin, Huang Changqiang, Dong Kangsheng, Zhang Zhuoran\",\"doi\":\"10.1007/s40747-023-01257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper researches the problem of Beyond Visual Range (BVR) air combat maneuver intention recognition. To achieve efficient and accurate intention recognition, an Attention enhanced Tuna Swarm Optimization-Parallel Bidirectional Gated Recurrent Unit network (A-TSO-PBiGRU) is proposed, which constructs a novel Parallel BiGRU (PBiGRU). Firstly, PBiGRU has a parallel network structure, whose proportion of forward and backward network can be adjusted by forward coefficient and backward coefficient. Secondly, to achieve object-oriented adjustment of forward and backward coefficients, the tuna swarm optimization algorithm is introduced and the negative log-likelihood estimation loss function is used as the objective function, it realizes the dynamic combination of sequence guidance and reverse correction. Finally, the attention mechanism is used to obtain more useful information to improve the recognition accuracy. Through offline recognition experiment, it is proved that A-TSO-PBiGRU can effectively improve the convergence speed and recognition accuracy compared with GRU-related networks. Compared with the other six comparison algorithms, maneuver intention recognition accuracy also has significant advantages. In the online recognition experiment, maneuver intention recognition accuracy of A-TSO-PBiGRU is 93.7%, it shows excellent maneuver intention recognition ability.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01257-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01257-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Beyond visual range maneuver intention recognition based on attention enhanced tuna swarm optimization parallel BiGRU
This paper researches the problem of Beyond Visual Range (BVR) air combat maneuver intention recognition. To achieve efficient and accurate intention recognition, an Attention enhanced Tuna Swarm Optimization-Parallel Bidirectional Gated Recurrent Unit network (A-TSO-PBiGRU) is proposed, which constructs a novel Parallel BiGRU (PBiGRU). Firstly, PBiGRU has a parallel network structure, whose proportion of forward and backward network can be adjusted by forward coefficient and backward coefficient. Secondly, to achieve object-oriented adjustment of forward and backward coefficients, the tuna swarm optimization algorithm is introduced and the negative log-likelihood estimation loss function is used as the objective function, it realizes the dynamic combination of sequence guidance and reverse correction. Finally, the attention mechanism is used to obtain more useful information to improve the recognition accuracy. Through offline recognition experiment, it is proved that A-TSO-PBiGRU can effectively improve the convergence speed and recognition accuracy compared with GRU-related networks. Compared with the other six comparison algorithms, maneuver intention recognition accuracy also has significant advantages. In the online recognition experiment, maneuver intention recognition accuracy of A-TSO-PBiGRU is 93.7%, it shows excellent maneuver intention recognition ability.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.