S. Sadeghi Tabas , N. Humaira , S. Samadi , N.C. Hubig
{"title":"FlowDyn:用于动态深度神经网络应用的每日流量预测管道","authors":"S. Sadeghi Tabas , N. Humaira , S. Samadi , N.C. Hubig","doi":"10.1016/j.envsoft.2023.105854","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This paper presents a dynamical neural network framework to understand how catchment systems respond to daily rainfall-runoff processes over time. We developed an interactive Python-based </span>deep neural network (DNN) package called FlowDyn (presented through a JS-based web platform) to simulate and forecast daily </span>streamflow<span><span> data for >180 gauging stations across the globe. Several DNN models, including long short-term memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid network of </span>convolutional neural network<span> and LSTM (ConvLSTM), as well as an auto encoder (AE) model were developed and integrated into the FlowDyn pipeline to analyze and forecast sequential daily streamflow values that are embedded within a web-based application for demonstration and visualization. Inputs were gathered from different web services, including the catchment attributes and meteorology for large-sample studies (CAMELS), the national climatic data center (NCDC), and the global runoff data center (GRDC). DNN configurations were trained and tested with an average accuracy rating of 0.83 across 183 river basins globally. FlowDyn simulation and performance demonstrated that different DNN models were able to learn both regionally consistent and location-specific hydrological behaviors. Through the findings of this paper, we advocate the merit of applying FlowDyn package in the field of daily rainfall-runoff prediction at both local and global scales.</span></span></p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"170 ","pages":"Article 105854"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlowDyn: A daily streamflow prediction pipeline for dynamical deep neural network applications\",\"authors\":\"S. Sadeghi Tabas , N. Humaira , S. Samadi , N.C. Hubig\",\"doi\":\"10.1016/j.envsoft.2023.105854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>This paper presents a dynamical neural network framework to understand how catchment systems respond to daily rainfall-runoff processes over time. We developed an interactive Python-based </span>deep neural network (DNN) package called FlowDyn (presented through a JS-based web platform) to simulate and forecast daily </span>streamflow<span><span> data for >180 gauging stations across the globe. Several DNN models, including long short-term memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid network of </span>convolutional neural network<span> and LSTM (ConvLSTM), as well as an auto encoder (AE) model were developed and integrated into the FlowDyn pipeline to analyze and forecast sequential daily streamflow values that are embedded within a web-based application for demonstration and visualization. Inputs were gathered from different web services, including the catchment attributes and meteorology for large-sample studies (CAMELS), the national climatic data center (NCDC), and the global runoff data center (GRDC). DNN configurations were trained and tested with an average accuracy rating of 0.83 across 183 river basins globally. FlowDyn simulation and performance demonstrated that different DNN models were able to learn both regionally consistent and location-specific hydrological behaviors. Through the findings of this paper, we advocate the merit of applying FlowDyn package in the field of daily rainfall-runoff prediction at both local and global scales.</span></span></p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"170 \",\"pages\":\"Article 105854\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815223002402\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815223002402","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
FlowDyn: A daily streamflow prediction pipeline for dynamical deep neural network applications
This paper presents a dynamical neural network framework to understand how catchment systems respond to daily rainfall-runoff processes over time. We developed an interactive Python-based deep neural network (DNN) package called FlowDyn (presented through a JS-based web platform) to simulate and forecast daily streamflow data for >180 gauging stations across the globe. Several DNN models, including long short-term memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid network of convolutional neural network and LSTM (ConvLSTM), as well as an auto encoder (AE) model were developed and integrated into the FlowDyn pipeline to analyze and forecast sequential daily streamflow values that are embedded within a web-based application for demonstration and visualization. Inputs were gathered from different web services, including the catchment attributes and meteorology for large-sample studies (CAMELS), the national climatic data center (NCDC), and the global runoff data center (GRDC). DNN configurations were trained and tested with an average accuracy rating of 0.83 across 183 river basins globally. FlowDyn simulation and performance demonstrated that different DNN models were able to learn both regionally consistent and location-specific hydrological behaviors. Through the findings of this paper, we advocate the merit of applying FlowDyn package in the field of daily rainfall-runoff prediction at both local and global scales.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.