{"title":"拉格朗日坐标系下经典武器内弹道数值模拟的实验验证","authors":"Filip Kagankiewicz, Mariusz Magier","doi":"10.1007/s00161-023-01263-3","DOIUrl":null,"url":null,"abstract":"<div><p>Using the possibilities of modern science and technology, it can be said that the presented mathematical model has been formulated without significant simplifications, and its (numerical) solution itself will be performed with high accuracy. The main purpose of the work was to create a tool supporting the calculation of the main problem of internal ballistics for barrel propellant systems in order to achieve digital solutions as close as possible to the results obtained using experimental ballistics methods. The scientific hypothesis of the work postulates that the physical model of internal ballistics formulated in Lagrange coordinates will allow to solve the main problem of internal ballistics of barrel systems in a digital way, obtaining such solution results that will satisfactorily reflect the solution results obtained using experimental ballistics methods. The results of digital simulations of physical phenomena of solutions to the main problem of internal ballistics of barrel weapons were compared with the results of experimental tests and the degree of agreement was determined.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 5","pages":"1323 - 1337"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-023-01263-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental verification of the internal ballistics numerical simulations of classical weapons in Lagrangian coordinates\",\"authors\":\"Filip Kagankiewicz, Mariusz Magier\",\"doi\":\"10.1007/s00161-023-01263-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the possibilities of modern science and technology, it can be said that the presented mathematical model has been formulated without significant simplifications, and its (numerical) solution itself will be performed with high accuracy. The main purpose of the work was to create a tool supporting the calculation of the main problem of internal ballistics for barrel propellant systems in order to achieve digital solutions as close as possible to the results obtained using experimental ballistics methods. The scientific hypothesis of the work postulates that the physical model of internal ballistics formulated in Lagrange coordinates will allow to solve the main problem of internal ballistics of barrel systems in a digital way, obtaining such solution results that will satisfactorily reflect the solution results obtained using experimental ballistics methods. The results of digital simulations of physical phenomena of solutions to the main problem of internal ballistics of barrel weapons were compared with the results of experimental tests and the degree of agreement was determined.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 5\",\"pages\":\"1323 - 1337\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-023-01263-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01263-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01263-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Experimental verification of the internal ballistics numerical simulations of classical weapons in Lagrangian coordinates
Using the possibilities of modern science and technology, it can be said that the presented mathematical model has been formulated without significant simplifications, and its (numerical) solution itself will be performed with high accuracy. The main purpose of the work was to create a tool supporting the calculation of the main problem of internal ballistics for barrel propellant systems in order to achieve digital solutions as close as possible to the results obtained using experimental ballistics methods. The scientific hypothesis of the work postulates that the physical model of internal ballistics formulated in Lagrange coordinates will allow to solve the main problem of internal ballistics of barrel systems in a digital way, obtaining such solution results that will satisfactorily reflect the solution results obtained using experimental ballistics methods. The results of digital simulations of physical phenomena of solutions to the main problem of internal ballistics of barrel weapons were compared with the results of experimental tests and the degree of agreement was determined.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.