{"title":"用广义熵恢复半经典爱因斯坦方程","authors":"Naman Kumar","doi":"10.1007/s10714-023-03172-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this letter, we show that the Semiclassical Einstein’s Field Equation can be recovered using the generalized entropy <span>\\(S_{gen}\\)</span>. This approach is reminiscent of non-equilibrium thermodynamics. Furthermore, contrary to the entanglement equilibrium approach of deriving the semiclassical Einstein’s equation, this approach does not require any such assumptions and still recovers its correct form. Therefore, in a sense, we also show the validity of the semiclassical approximation, a crucial approach for establishing a number of important ideas such as the Hawking effect.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovering semiclassical Einstein’s equation using generalized entropy\",\"authors\":\"Naman Kumar\",\"doi\":\"10.1007/s10714-023-03172-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this letter, we show that the Semiclassical Einstein’s Field Equation can be recovered using the generalized entropy <span>\\\\(S_{gen}\\\\)</span>. This approach is reminiscent of non-equilibrium thermodynamics. Furthermore, contrary to the entanglement equilibrium approach of deriving the semiclassical Einstein’s equation, this approach does not require any such assumptions and still recovers its correct form. Therefore, in a sense, we also show the validity of the semiclassical approximation, a crucial approach for establishing a number of important ideas such as the Hawking effect.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"55 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-023-03172-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-023-03172-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Recovering semiclassical Einstein’s equation using generalized entropy
In this letter, we show that the Semiclassical Einstein’s Field Equation can be recovered using the generalized entropy \(S_{gen}\). This approach is reminiscent of non-equilibrium thermodynamics. Furthermore, contrary to the entanglement equilibrium approach of deriving the semiclassical Einstein’s equation, this approach does not require any such assumptions and still recovers its correct form. Therefore, in a sense, we also show the validity of the semiclassical approximation, a crucial approach for establishing a number of important ideas such as the Hawking effect.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.