{"title":"ReLU神经网络的多元Riesz基","authors":"Cornelia Schneider , Jan Vybíral","doi":"10.1016/j.acha.2023.101605","DOIUrl":null,"url":null,"abstract":"<div><p><span>We consider the trigonometric-like system of piecewise linear<span> functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of </span></span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span><span> based on the Gershgorin theorem. We also generalize this system to higher dimensions </span><span><math><mi>d</mi><mo>></mo><mn>1</mn></math></span> by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span><span> can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of </span><em>d</em><span>, making it an attractive building block regarding future multivariate analysis of neural networks.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101605"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multivariate Riesz basis of ReLU neural networks\",\"authors\":\"Cornelia Schneider , Jan Vybíral\",\"doi\":\"10.1016/j.acha.2023.101605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We consider the trigonometric-like system of piecewise linear<span> functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of </span></span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span><span> based on the Gershgorin theorem. We also generalize this system to higher dimensions </span><span><math><mi>d</mi><mo>></mo><mn>1</mn></math></span> by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span><span> can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of </span><em>d</em><span>, making it an attractive building block regarding future multivariate analysis of neural networks.</span></p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101605\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000921\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000921","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A multivariate Riesz basis of ReLU neural networks
We consider the trigonometric-like system of piecewise linear functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of based on the Gershgorin theorem. We also generalize this system to higher dimensions by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of d, making it an attractive building block regarding future multivariate analysis of neural networks.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.