胰岛素样生长因子-1对牛卵泡雌二醇受体、类固醇生成酶和类固醇产生的mRNA表达的影响。

IF 1.9 4区 生物学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Reproduction and Development Pub Date : 2023-12-08 Epub Date: 2023-11-08 DOI:10.1262/jrd.2023-047
Ahmad Farid Rawan, Hikmatullah Langar, Maho Munetomo, Yuki Yamamoto, Kohei Kawano, Koji Kimura
{"title":"胰岛素样生长因子-1对牛卵泡雌二醇受体、类固醇生成酶和类固醇产生的mRNA表达的影响。","authors":"Ahmad Farid Rawan, Hikmatullah Langar, Maho Munetomo, Yuki Yamamoto, Kohei Kawano, Koji Kimura","doi":"10.1262/jrd.2023-047","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17β (E2) assumes a central role in follicular development and selection by activating estrogen receptors β (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (< 6 mm) exhibited the highest levels of ESR2 mRNA expression, whereas medium-sized follicles (7-8 mm) displayed higher levels than large-sized follicles (≥ 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small- and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small- and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection.</p>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":" ","pages":"337-346"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of insulin-like growth factor-1 on the mRNA expression of estradiol receptors, steroidogenic enzymes, and steroid production in bovine follicles.\",\"authors\":\"Ahmad Farid Rawan, Hikmatullah Langar, Maho Munetomo, Yuki Yamamoto, Kohei Kawano, Koji Kimura\",\"doi\":\"10.1262/jrd.2023-047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17β (E2) assumes a central role in follicular development and selection by activating estrogen receptors β (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (< 6 mm) exhibited the highest levels of ESR2 mRNA expression, whereas medium-sized follicles (7-8 mm) displayed higher levels than large-sized follicles (≥ 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small- and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small- and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection.</p>\",\"PeriodicalId\":16942,\"journal\":{\"name\":\"Journal of Reproduction and Development\",\"volume\":\" \",\"pages\":\"337-346\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reproduction and Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2023-047\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-047","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

胰岛素样生长因子-1(IGF-1)在卵泡生长中起着至关重要的作用,并刺激牛卵泡中类固醇激素的产生。类固醇激素是在促性腺激素的影响下,通过鞘细胞(TC)和颗粒细胞(GC)中的类固醇生成酶,特别是STAR、CYP11A1、HSD3B和CYP19A1的作用合成的。特别是,雌二醇17β(E2)通过激活GC中的雌激素受体β(ESR2)在卵泡发育和选择中发挥核心作用。我们评估了发育中卵泡GC中ESR2 mRNA的表达,并研究了IGF-1对培养的GC和TC中ESR2、CYP19A1、FSHR和LHCGR、STAR、CYP11A1和HSD17B mRNA表达的影响。此外,我们评估了IGF-1对TC中雄烯二酮(A4)、孕酮(P4)和睾酮(T)产生的影响。小型卵泡(<6mm)的ESR2 mRNA表达水平最高,而中型卵泡(7-8mm)的ESR2mRNA表达水平高于大型卵泡(≥9mm)(P<0.05)。IGF-1增加了两种尺寸卵泡GC中ESR2、CYP19A1和FSHR的mRNA表达,IGF-1显著升高中、小卵泡TC中LHCGR、STAR、CYP11A1和CYP17B的mRNA表达(P<0.05)。此外,IGF-1增加了A4和P4的产生,但对中、小毛囊TC中T的产生没有影响。总之,我们的研究结果表明,IGF-1上调类固醇生成酶和类固醇激素的产生,强调了IGF-1在卵泡发育和选择中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of insulin-like growth factor-1 on the mRNA expression of estradiol receptors, steroidogenic enzymes, and steroid production in bovine follicles.

Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17β (E2) assumes a central role in follicular development and selection by activating estrogen receptors β (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (< 6 mm) exhibited the highest levels of ESR2 mRNA expression, whereas medium-sized follicles (7-8 mm) displayed higher levels than large-sized follicles (≥ 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small- and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small- and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Reproduction and Development
Journal of Reproduction and Development 生物-奶制品与动物科学
CiteScore
3.70
自引率
11.10%
发文量
52
审稿时长
2 months
期刊介绍: Journal of Reproduction and Development (JRD) is the official journal of the Society for Reproduction and Development, published bimonthly, and welcomes original articles. JRD provides free full-text access of all the published articles on the web. The functions of the journal are managed by Editorial Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are peer-reviewed critically by two or more reviewers. Acceptance is based on scientific content and presentation of the materials. The Editors select reviewers and correspond with authors. Final decisions about acceptance or rejection of manuscripts are made by the Editor-in-Chief and Co-Editor-in-Chief.
期刊最新文献
Application of bovine progesterone intravaginal controlled-release formulation for estrus synchronization treatment in goats. Serum concentrations of anti-Müllerian hormone modulate ovarian response to different doses of follicle-stimulating hormone in Japanese Black donors. Addition of granulocyte macrophage colony stimulating factor (GM-CSF) during in vitro oocyte maturation improves embryo development in a mouse model of advanced maternal age. Ccdc152 is not necessary for male fertility, but contributes to maintaining sperm morphology. Fertilization and developmental competence of in vitro fertilized embryos from C57BL/6J mice of different ages and the impact of vitrification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1