{"title":"【机制蛋白肿瘤】。","authors":"H Guo, Y S He, M J Liu, B Cheng, F Xu","doi":"10.3760/cma.j.cn112152-20230904-00118","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of \"Tumor Mechanomedicine\". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.</p>","PeriodicalId":39868,"journal":{"name":"中华肿瘤杂志","volume":"45 ","pages":"536-548"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Tumor mechanomedicine].\",\"authors\":\"H Guo, Y S He, M J Liu, B Cheng, F Xu\",\"doi\":\"10.3760/cma.j.cn112152-20230904-00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of \\\"Tumor Mechanomedicine\\\". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.</p>\",\"PeriodicalId\":39868,\"journal\":{\"name\":\"中华肿瘤杂志\",\"volume\":\"45 \",\"pages\":\"536-548\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华肿瘤杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn112152-20230904-00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华肿瘤杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112152-20230904-00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of "Tumor Mechanomedicine". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.