{"title":"通过腹足类外壳的相互关系侵蚀、圆度和生长来了解生物对海岸酸化的反应。","authors":"David J Marshall, Amira Rashid","doi":"10.6620/ZS.2023.62-41","DOIUrl":null,"url":null,"abstract":"<p><p>urrent understanding of how calcifying organisms respond to externally forced oceanic and coastal acidification (OCA) is largely based on short-term, controlled laboratory or mesocosm experiments. Studies on organismal responses to acidification (reduced carbonate saturation and pH) in the wild, where animals simultaneously interact with a range of biotic and abiotic circumstances, are limited in scope and interpretation. The present study aimed to better understand how gastropod shell attributes and their interrelations can inform about responses to coastal acidification. We investigated shell chemical erosion, shell roundness, and growth rate of <i>Planaxis sulcatus</i> snails, which are locally exposed to acidified and non-acidified rocky intertidal water. We tested a new approach to quantifying shell erosion based on the spiral suture length (EI, erosion index) and found that shell erosion mirrored field acidification conditions. Exposure to acidification caused shells to become rounder (width/length). Field growth rate, determined from apertural margin extension of marked and later recaptured snails, was strongly negatively related to both shell erosion and shell roundness. Since different shell attributes are indicative of different relationships-shell erosion is an extrinsic passive marker of acidification, and shell roundness and growth rate are intrinsic performance responders-analyzing their interrelations can imply causation, enhance predictive power, and bolster interpretation confidence. This study contributes to the methodology and interpretation of findings of trait-based field investigations to understand organismal responses to coastal acidification.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Organismal Responses to Coastal Acidification Informed by Interrelating Erosion, Roundness and Growth of Gastropod Shells.\",\"authors\":\"David J Marshall, Amira Rashid\",\"doi\":\"10.6620/ZS.2023.62-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>urrent understanding of how calcifying organisms respond to externally forced oceanic and coastal acidification (OCA) is largely based on short-term, controlled laboratory or mesocosm experiments. Studies on organismal responses to acidification (reduced carbonate saturation and pH) in the wild, where animals simultaneously interact with a range of biotic and abiotic circumstances, are limited in scope and interpretation. The present study aimed to better understand how gastropod shell attributes and their interrelations can inform about responses to coastal acidification. We investigated shell chemical erosion, shell roundness, and growth rate of <i>Planaxis sulcatus</i> snails, which are locally exposed to acidified and non-acidified rocky intertidal water. We tested a new approach to quantifying shell erosion based on the spiral suture length (EI, erosion index) and found that shell erosion mirrored field acidification conditions. Exposure to acidification caused shells to become rounder (width/length). Field growth rate, determined from apertural margin extension of marked and later recaptured snails, was strongly negatively related to both shell erosion and shell roundness. Since different shell attributes are indicative of different relationships-shell erosion is an extrinsic passive marker of acidification, and shell roundness and growth rate are intrinsic performance responders-analyzing their interrelations can imply causation, enhance predictive power, and bolster interpretation confidence. This study contributes to the methodology and interpretation of findings of trait-based field investigations to understand organismal responses to coastal acidification.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.6620/ZS.2023.62-41\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.6620/ZS.2023.62-41","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Organismal Responses to Coastal Acidification Informed by Interrelating Erosion, Roundness and Growth of Gastropod Shells.
urrent understanding of how calcifying organisms respond to externally forced oceanic and coastal acidification (OCA) is largely based on short-term, controlled laboratory or mesocosm experiments. Studies on organismal responses to acidification (reduced carbonate saturation and pH) in the wild, where animals simultaneously interact with a range of biotic and abiotic circumstances, are limited in scope and interpretation. The present study aimed to better understand how gastropod shell attributes and their interrelations can inform about responses to coastal acidification. We investigated shell chemical erosion, shell roundness, and growth rate of Planaxis sulcatus snails, which are locally exposed to acidified and non-acidified rocky intertidal water. We tested a new approach to quantifying shell erosion based on the spiral suture length (EI, erosion index) and found that shell erosion mirrored field acidification conditions. Exposure to acidification caused shells to become rounder (width/length). Field growth rate, determined from apertural margin extension of marked and later recaptured snails, was strongly negatively related to both shell erosion and shell roundness. Since different shell attributes are indicative of different relationships-shell erosion is an extrinsic passive marker of acidification, and shell roundness and growth rate are intrinsic performance responders-analyzing their interrelations can imply causation, enhance predictive power, and bolster interpretation confidence. This study contributes to the methodology and interpretation of findings of trait-based field investigations to understand organismal responses to coastal acidification.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.