Yuxia Huang, Ji Zhang, Qinhua Zhao, Xiaoyi Hu, Hui Zhao, Shang Wang, Lan Wang, Rong Jiang, Wenhui Wu, Jinming Liu, Ping Yuan, Sugang Gong
{"title":"载脂蛋白A-I水平降低对肺动脉高压的影响。","authors":"Yuxia Huang, Ji Zhang, Qinhua Zhao, Xiaoyi Hu, Hui Zhao, Shang Wang, Lan Wang, Rong Jiang, Wenhui Wu, Jinming Liu, Ping Yuan, Sugang Gong","doi":"10.1016/j.hjc.2023.10.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The significance of apolipoprotein A-I (ApoA-I) is the anti-inflammatory functional component of high-density lipoprotein, which needs to be further studied in relation to pulmonary arterial hypertension (PAH). This study aimed to identify the predictive value of ApoA-1 on the risk and prognosis of PAH, as well as the underlying anti-inflammatory mechanism.</p><p><strong>Methods: </strong>Proteomic analysis was conducted on lung tissue from 6 PAH patients and 4 lung donors. Prediction of risk and mortality risk factors associated with PAH in 343 patients used logistic analysis and Cox regression analysis, respectively. The protective function of ApoA-I was assessed in human pulmonary arterial endothelial cells (HPAEC), while its anti-inflammatory function was evaluated in THP-1 macrophages.</p><p><strong>Results: </strong>In the lung tissues of patients with PAH, 168 differentially expressed proteins were associated with lipid metabolism according to GO and KEGG enrichment analysis. A protein-protein interaction network identified ApoA-I as a key protein associated with PAH. Lower ApoA-I levels were independent risk factors for PAH and displayed a stronger predictive value for PAH mortality. Plasma interleukin 6 (IL-6) levels were positively correlated with risk stratification and were higher in PAH patients with lower ApoA-I levels. ApoA-I was downregulated in the lung tissues of monocrotaline (MCT) -induced rats. ApoA-I could reduce the IL-6-induced pro-proliferative and pro-migratory abilities of HPAEC and inhibit the secretion of IL-6 from macrophages, which is compromised under hypoxic conditions.</p><p><strong>Conclusion: </strong>Our study identified the significance of ApoA-I as a biomarker for predicting the survival outcome of PAH patients, which might relate to its altered anti-inflammatory properties.</p>","PeriodicalId":55062,"journal":{"name":"Hellenic Journal of Cardiology","volume":" ","pages":"31-46"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of reduced apolipoprotein A-I levels on pulmonary arterial hypertension.\",\"authors\":\"Yuxia Huang, Ji Zhang, Qinhua Zhao, Xiaoyi Hu, Hui Zhao, Shang Wang, Lan Wang, Rong Jiang, Wenhui Wu, Jinming Liu, Ping Yuan, Sugang Gong\",\"doi\":\"10.1016/j.hjc.2023.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The significance of apolipoprotein A-I (ApoA-I) is the anti-inflammatory functional component of high-density lipoprotein, which needs to be further studied in relation to pulmonary arterial hypertension (PAH). This study aimed to identify the predictive value of ApoA-1 on the risk and prognosis of PAH, as well as the underlying anti-inflammatory mechanism.</p><p><strong>Methods: </strong>Proteomic analysis was conducted on lung tissue from 6 PAH patients and 4 lung donors. Prediction of risk and mortality risk factors associated with PAH in 343 patients used logistic analysis and Cox regression analysis, respectively. The protective function of ApoA-I was assessed in human pulmonary arterial endothelial cells (HPAEC), while its anti-inflammatory function was evaluated in THP-1 macrophages.</p><p><strong>Results: </strong>In the lung tissues of patients with PAH, 168 differentially expressed proteins were associated with lipid metabolism according to GO and KEGG enrichment analysis. A protein-protein interaction network identified ApoA-I as a key protein associated with PAH. Lower ApoA-I levels were independent risk factors for PAH and displayed a stronger predictive value for PAH mortality. Plasma interleukin 6 (IL-6) levels were positively correlated with risk stratification and were higher in PAH patients with lower ApoA-I levels. ApoA-I was downregulated in the lung tissues of monocrotaline (MCT) -induced rats. ApoA-I could reduce the IL-6-induced pro-proliferative and pro-migratory abilities of HPAEC and inhibit the secretion of IL-6 from macrophages, which is compromised under hypoxic conditions.</p><p><strong>Conclusion: </strong>Our study identified the significance of ApoA-I as a biomarker for predicting the survival outcome of PAH patients, which might relate to its altered anti-inflammatory properties.</p>\",\"PeriodicalId\":55062,\"journal\":{\"name\":\"Hellenic Journal of Cardiology\",\"volume\":\" \",\"pages\":\"31-46\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hellenic Journal of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hjc.2023.10.004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hellenic Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.hjc.2023.10.004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Impact of reduced apolipoprotein A-I levels on pulmonary arterial hypertension.
Objective: The significance of apolipoprotein A-I (ApoA-I) is the anti-inflammatory functional component of high-density lipoprotein, which needs to be further studied in relation to pulmonary arterial hypertension (PAH). This study aimed to identify the predictive value of ApoA-1 on the risk and prognosis of PAH, as well as the underlying anti-inflammatory mechanism.
Methods: Proteomic analysis was conducted on lung tissue from 6 PAH patients and 4 lung donors. Prediction of risk and mortality risk factors associated with PAH in 343 patients used logistic analysis and Cox regression analysis, respectively. The protective function of ApoA-I was assessed in human pulmonary arterial endothelial cells (HPAEC), while its anti-inflammatory function was evaluated in THP-1 macrophages.
Results: In the lung tissues of patients with PAH, 168 differentially expressed proteins were associated with lipid metabolism according to GO and KEGG enrichment analysis. A protein-protein interaction network identified ApoA-I as a key protein associated with PAH. Lower ApoA-I levels were independent risk factors for PAH and displayed a stronger predictive value for PAH mortality. Plasma interleukin 6 (IL-6) levels were positively correlated with risk stratification and were higher in PAH patients with lower ApoA-I levels. ApoA-I was downregulated in the lung tissues of monocrotaline (MCT) -induced rats. ApoA-I could reduce the IL-6-induced pro-proliferative and pro-migratory abilities of HPAEC and inhibit the secretion of IL-6 from macrophages, which is compromised under hypoxic conditions.
Conclusion: Our study identified the significance of ApoA-I as a biomarker for predicting the survival outcome of PAH patients, which might relate to its altered anti-inflammatory properties.
期刊介绍:
The Hellenic Journal of Cardiology (International Edition, ISSN 1109-9666) is the official journal of the Hellenic Society of Cardiology and aims to publish high-quality articles on all aspects of cardiovascular medicine. A primary goal is to publish in each issue a number of original articles related to clinical and basic research. Many of these will be accompanied by invited editorial comments.
Hot topics, such as molecular cardiology, and innovative cardiac imaging and electrophysiological mapping techniques, will appear frequently in the journal in the form of invited expert articles or special reports. The Editorial Committee also attaches great importance to subjects related to continuing medical education, the implementation of guidelines and cost effectiveness in cardiology.