用于本体感觉位置反馈的循环可控漏斗错觉方法的设计和评估。

Jinsub Lee, Yu Seok Hwang, Hyung-Soon Park
{"title":"用于本体感觉位置反馈的循环可控漏斗错觉方法的设计和评估。","authors":"Jinsub Lee, Yu Seok Hwang, Hyung-Soon Park","doi":"10.1109/ICORR58425.2023.10304733","DOIUrl":null,"url":null,"abstract":"<p><p>The sense of proprioception plays a critical role in motor function by providing a sense of body position and movement. Recent research has highlighted the impact of impaired proprioception on rehabilitation outcomes for stroke patients. To address this issue, various studies have explored the use of vibrotactile feedback to aid and enhance impaired proprioception. Since most studies focused on investigating the characteristics of human proprioceptive position or movement sense, the fixed and cumbersome equipment used for those studies is inappropriate for daily use where compact and portable device is preferred. To address this limitation, we propose a novel vibrotactile feedback method that provides joint-level state information using the cyclic vibrotactile funneling illusion. The proposed method was validated in first experiment with eleven healthy subjects, and the accuracy of proposed method in bi-directional scheme was evaluated through second experiments with three healthy subjects. Our methods demonstrated sufficient ability to transmit proprioceptive position information, making them potentially applicable to various wearable rehabilitation devices, thereby enabling more effective rehabilitation for patients with proprioceptive impairment.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Evaluation of Cyclic Vibrotactile Funneling Illusion Method for Proprioceptive Position Sense Feedback.\",\"authors\":\"Jinsub Lee, Yu Seok Hwang, Hyung-Soon Park\",\"doi\":\"10.1109/ICORR58425.2023.10304733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sense of proprioception plays a critical role in motor function by providing a sense of body position and movement. Recent research has highlighted the impact of impaired proprioception on rehabilitation outcomes for stroke patients. To address this issue, various studies have explored the use of vibrotactile feedback to aid and enhance impaired proprioception. Since most studies focused on investigating the characteristics of human proprioceptive position or movement sense, the fixed and cumbersome equipment used for those studies is inappropriate for daily use where compact and portable device is preferred. To address this limitation, we propose a novel vibrotactile feedback method that provides joint-level state information using the cyclic vibrotactile funneling illusion. The proposed method was validated in first experiment with eleven healthy subjects, and the accuracy of proposed method in bi-directional scheme was evaluated through second experiments with three healthy subjects. Our methods demonstrated sufficient ability to transmit proprioceptive position information, making them potentially applicable to various wearable rehabilitation devices, thereby enabling more effective rehabilitation for patients with proprioceptive impairment.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本体感觉通过提供身体位置和运动的感觉,在运动功能中起着至关重要的作用。最近的研究强调了本体感觉受损对中风患者康复结果的影响。为了解决这个问题,各种研究探索了使用振动触觉反馈来帮助和增强受损的本体感觉。由于大多数研究都集中在研究人类本体感觉位置或运动感的特征上,因此用于这些研究的固定且笨重的设备不适合日常使用,因为在日常使用中,首选紧凑且便携的设备。为了解决这一限制,我们提出了一种新的振动触觉反馈方法,该方法使用循环振动触觉漏斗错觉提供关节级状态信息。该方法在第一个实验中对11名健康受试者进行了验证,并在第二个实验中评估了该方法在双向方案中的准确性。我们的方法证明了传递本体感觉位置信息的足够能力,使其有可能应用于各种可穿戴康复设备,从而为本体感觉障碍患者提供更有效的康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Evaluation of Cyclic Vibrotactile Funneling Illusion Method for Proprioceptive Position Sense Feedback.

The sense of proprioception plays a critical role in motor function by providing a sense of body position and movement. Recent research has highlighted the impact of impaired proprioception on rehabilitation outcomes for stroke patients. To address this issue, various studies have explored the use of vibrotactile feedback to aid and enhance impaired proprioception. Since most studies focused on investigating the characteristics of human proprioceptive position or movement sense, the fixed and cumbersome equipment used for those studies is inappropriate for daily use where compact and portable device is preferred. To address this limitation, we propose a novel vibrotactile feedback method that provides joint-level state information using the cyclic vibrotactile funneling illusion. The proposed method was validated in first experiment with eleven healthy subjects, and the accuracy of proposed method in bi-directional scheme was evaluated through second experiments with three healthy subjects. Our methods demonstrated sufficient ability to transmit proprioceptive position information, making them potentially applicable to various wearable rehabilitation devices, thereby enabling more effective rehabilitation for patients with proprioceptive impairment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Individualized Three-Dimensional Gait Pattern Generator for Lower Limbs Rehabilitation Robots. Individualized Training of Back Muscles Using Iterative Learning Control of a Compliant Balance Board. Influence of Robotic Therapy on Severe Stroke Patients. INSPIIRE - A Modular and Passive Exoskeleton to Investigate Human Walking and Balance. Instrumented Upper Limb Functional Assessment Using a Robotic Exoskeleton: Normative References Intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1