外骨骼辅助和虚拟抓取过程中的握力动力学。

Christian Ritter, Miriam Senne, Nicolas Berberich, Karahan Yilmazer, Natalia Paredes-Acuna, Gordon Cheng
{"title":"外骨骼辅助和虚拟抓取过程中的握力动力学。","authors":"Christian Ritter, Miriam Senne, Nicolas Berberich, Karahan Yilmazer, Natalia Paredes-Acuna, Gordon Cheng","doi":"10.1109/ICORR58425.2023.10304698","DOIUrl":null,"url":null,"abstract":"<p><p>The grip force dynamics during grasping and lifting of diversely weighted objects are highly informative about an individual's level of sensorimotor control and potential neurological condition. Therefore, grip force profiles might be used for assessment and bio-feedback training during neurorehabilitation therapy. Modern neurorehabilitation methods, such as exoskeleton-assisted grasping and virtual-reality-based hand function training, strongly differ from classical grasp-and-lift experiments which might influence the sensorimotor control of grasping and thus the characteristics of grip force profiles. In this feasibility study with six healthy participants, we investigated the changes in grip force profiles during exoskeleton-assisted grasping and grasping of virtual objects. Our results show that a light-weight and highly compliant hand exoskeleton is able to assist users during grasping while not removing the core characteristics of their grip force dynamics. Furthermore, we show that when participants grasp objects with virtual weights, they adapt quickly to unknown virtual weights and choose efficient grip forces. Moreover, predictive overshoot forces are produced that match inertial forces which would originate from a physical object of the same weight. In summary, these results suggest that users of advanced neurorehabilitation methods employ and adapt their prior internal forward models for sensorimotor control of grasping. Incorporating such insights about the grip force dynamics of human grasping in the design of neurorehabilitation methods, such as hand exoskeletons, might improve their usability and rehabilitative function.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grip Force Dynamics During Exoskeleton-Assisted and Virtual Grasping.\",\"authors\":\"Christian Ritter, Miriam Senne, Nicolas Berberich, Karahan Yilmazer, Natalia Paredes-Acuna, Gordon Cheng\",\"doi\":\"10.1109/ICORR58425.2023.10304698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The grip force dynamics during grasping and lifting of diversely weighted objects are highly informative about an individual's level of sensorimotor control and potential neurological condition. Therefore, grip force profiles might be used for assessment and bio-feedback training during neurorehabilitation therapy. Modern neurorehabilitation methods, such as exoskeleton-assisted grasping and virtual-reality-based hand function training, strongly differ from classical grasp-and-lift experiments which might influence the sensorimotor control of grasping and thus the characteristics of grip force profiles. In this feasibility study with six healthy participants, we investigated the changes in grip force profiles during exoskeleton-assisted grasping and grasping of virtual objects. Our results show that a light-weight and highly compliant hand exoskeleton is able to assist users during grasping while not removing the core characteristics of their grip force dynamics. Furthermore, we show that when participants grasp objects with virtual weights, they adapt quickly to unknown virtual weights and choose efficient grip forces. Moreover, predictive overshoot forces are produced that match inertial forces which would originate from a physical object of the same weight. In summary, these results suggest that users of advanced neurorehabilitation methods employ and adapt their prior internal forward models for sensorimotor control of grasping. Incorporating such insights about the grip force dynamics of human grasping in the design of neurorehabilitation methods, such as hand exoskeletons, might improve their usability and rehabilitative function.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抓握和举起不同重量物体期间的抓握力动力学对个体的感觉运动控制水平和潜在的神经系统状况具有很高的信息性。因此,握力谱可用于神经康复治疗期间的评估和生物反馈训练。现代神经康复方法,如外骨骼辅助抓握和基于虚拟现实的手功能训练,与经典的抓握和举举实验有很大不同,后者可能会影响抓握的感觉运动控制,从而影响抓握力分布的特征。在这项由六名健康参与者参与的可行性研究中,我们研究了外骨骼辅助抓取和抓取虚拟物体过程中抓取力分布的变化。我们的研究结果表明,重量轻、高度柔顺的手部外骨骼能够在抓握过程中帮助用户,同时不会消除其抓握力动力学的核心特征。此外,我们还表明,当参与者用虚拟重量抓握物体时,他们会迅速适应未知的虚拟重量,并选择有效的抓握力。此外,产生的预测超调力与惯性力相匹配,惯性力源自相同重量的物理物体。总之,这些结果表明,高级神经康复方法的使用者采用并调整了他们以前的内部前向模型,用于抓握的感觉运动控制。在神经康复方法(如手外骨骼)的设计中,结合这些关于人类抓握的抓握力动力学的见解,可能会提高其可用性和康复功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grip Force Dynamics During Exoskeleton-Assisted and Virtual Grasping.

The grip force dynamics during grasping and lifting of diversely weighted objects are highly informative about an individual's level of sensorimotor control and potential neurological condition. Therefore, grip force profiles might be used for assessment and bio-feedback training during neurorehabilitation therapy. Modern neurorehabilitation methods, such as exoskeleton-assisted grasping and virtual-reality-based hand function training, strongly differ from classical grasp-and-lift experiments which might influence the sensorimotor control of grasping and thus the characteristics of grip force profiles. In this feasibility study with six healthy participants, we investigated the changes in grip force profiles during exoskeleton-assisted grasping and grasping of virtual objects. Our results show that a light-weight and highly compliant hand exoskeleton is able to assist users during grasping while not removing the core characteristics of their grip force dynamics. Furthermore, we show that when participants grasp objects with virtual weights, they adapt quickly to unknown virtual weights and choose efficient grip forces. Moreover, predictive overshoot forces are produced that match inertial forces which would originate from a physical object of the same weight. In summary, these results suggest that users of advanced neurorehabilitation methods employ and adapt their prior internal forward models for sensorimotor control of grasping. Incorporating such insights about the grip force dynamics of human grasping in the design of neurorehabilitation methods, such as hand exoskeletons, might improve their usability and rehabilitative function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Individualized Three-Dimensional Gait Pattern Generator for Lower Limbs Rehabilitation Robots. Individualized Training of Back Muscles Using Iterative Learning Control of a Compliant Balance Board. Influence of Robotic Therapy on Severe Stroke Patients. INSPIIRE - A Modular and Passive Exoskeleton to Investigate Human Walking and Balance. Instrumented Upper Limb Functional Assessment Using a Robotic Exoskeleton: Normative References Intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1