机器人上肢康复的以人为中心的功能任务设计。

Anna Bucchieri, Federico Tessari, Stefano Buccelli, Giacinto Barresi, Elena De Momi, Matteo Laffranchi, Lorenzo De Michieli
{"title":"机器人上肢康复的以人为中心的功能任务设计。","authors":"Anna Bucchieri, Federico Tessari, Stefano Buccelli, Giacinto Barresi, Elena De Momi, Matteo Laffranchi, Lorenzo De Michieli","doi":"10.1109/ICORR58425.2023.10304738","DOIUrl":null,"url":null,"abstract":"<p><p>Robotic rehabilitation has demonstrated slight positive effects compared to traditional care, but there is still a lack of targeted high-level control strategies in the current state-of-the-art for minimizing pathological motor behaviors. In this study, we analyzed upper-limb motion capture data from healthy subjects performing a pick-and-place task to identify task-specific variability in postural patterns. The results revealed consistent behaviors among subjects, presenting an opportunity to develop a novel extraction method for variable volume references based solely on observations from healthy individuals. These human-centered references were tested on a simulated 4 degrees-of-freedom upper-limb exoskeleton, showing its compliant adaptation to the path considering the variance in healthy subjects' motor behavior.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-Centered Functional Task Design for Robotic Upper-Limb Rehabilitation.\",\"authors\":\"Anna Bucchieri, Federico Tessari, Stefano Buccelli, Giacinto Barresi, Elena De Momi, Matteo Laffranchi, Lorenzo De Michieli\",\"doi\":\"10.1109/ICORR58425.2023.10304738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robotic rehabilitation has demonstrated slight positive effects compared to traditional care, but there is still a lack of targeted high-level control strategies in the current state-of-the-art for minimizing pathological motor behaviors. In this study, we analyzed upper-limb motion capture data from healthy subjects performing a pick-and-place task to identify task-specific variability in postural patterns. The results revealed consistent behaviors among subjects, presenting an opportunity to develop a novel extraction method for variable volume references based solely on observations from healthy individuals. These human-centered references were tested on a simulated 4 degrees-of-freedom upper-limb exoskeleton, showing its compliant adaptation to the path considering the variance in healthy subjects' motor behavior.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统护理相比,机器人康复已显示出轻微的积极效果,但在当前最先进的技术中,仍缺乏有针对性的高水平控制策略来最大限度地减少病理性运动行为。在这项研究中,我们分析了健康受试者进行挑选和放置任务的上肢运动捕捉数据,以确定姿势模式中特定任务的可变性。研究结果揭示了受试者之间的一致行为,为开发一种仅基于健康个体观察的可变体积参考文献的新提取方法提供了机会。这些以人为中心的参考文献在模拟的4自由度上肢外骨骼上进行了测试,考虑到健康受试者运动行为的变化,显示出其对路径的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-Centered Functional Task Design for Robotic Upper-Limb Rehabilitation.

Robotic rehabilitation has demonstrated slight positive effects compared to traditional care, but there is still a lack of targeted high-level control strategies in the current state-of-the-art for minimizing pathological motor behaviors. In this study, we analyzed upper-limb motion capture data from healthy subjects performing a pick-and-place task to identify task-specific variability in postural patterns. The results revealed consistent behaviors among subjects, presenting an opportunity to develop a novel extraction method for variable volume references based solely on observations from healthy individuals. These human-centered references were tested on a simulated 4 degrees-of-freedom upper-limb exoskeleton, showing its compliant adaptation to the path considering the variance in healthy subjects' motor behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Individualized Three-Dimensional Gait Pattern Generator for Lower Limbs Rehabilitation Robots. Individualized Training of Back Muscles Using Iterative Learning Control of a Compliant Balance Board. Influence of Robotic Therapy on Severe Stroke Patients. INSPIIRE - A Modular and Passive Exoskeleton to Investigate Human Walking and Balance. Instrumented Upper Limb Functional Assessment Using a Robotic Exoskeleton: Normative References Intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1