基于机器人支架的躯干能力多维评估:对脊髓损伤患者的初步研究。

Xingzhao Guo, Zhihao Zhou, Qining Wang
{"title":"基于机器人支架的躯干能力多维评估:对脊髓损伤患者的初步研究。","authors":"Xingzhao Guo, Zhihao Zhou, Qining Wang","doi":"10.1109/ICORR58425.2023.10304681","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating trunk control ability is significant in guiding patients towards proper functional training. Most existing devices have only a singular assessment function, resulting in prolonged and asynchronous assessments. Devices with multi-dimensional assessment capabilities may address these limitations. This study utilizes a robotic brace, RoboBDsys-II, to assess the trunk ability of individuals with spinal disorders and to validate its effectiveness. The device can simultaneously collect kinematic, kinetic, and center of pressure data, reducing the assessment time and enabling the simultaneous assessment. The force platform is designed to measure the center of pressure and the force control of the parallel module is developed for the coronal movement assessment. Four patients with spinal cord injury participated in the study to assess their trunk range of motion and muscle strength. Results demonstrate that the trunk range of motion determines the center of pressure metrics in lateral bending experiments. Furthermore, RoboBDsys-II exhibits excellent test-retest reliability in lateral bending experiments and can reveal the muscle strength differences in different directions. The system has potential advantage in the trunk ability assessment.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic Brace Based Multi-Dimensional Assessment for Trunk Ability: A Preliminary Study in Patients with Spinal Cord Injury.\",\"authors\":\"Xingzhao Guo, Zhihao Zhou, Qining Wang\",\"doi\":\"10.1109/ICORR58425.2023.10304681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating trunk control ability is significant in guiding patients towards proper functional training. Most existing devices have only a singular assessment function, resulting in prolonged and asynchronous assessments. Devices with multi-dimensional assessment capabilities may address these limitations. This study utilizes a robotic brace, RoboBDsys-II, to assess the trunk ability of individuals with spinal disorders and to validate its effectiveness. The device can simultaneously collect kinematic, kinetic, and center of pressure data, reducing the assessment time and enabling the simultaneous assessment. The force platform is designed to measure the center of pressure and the force control of the parallel module is developed for the coronal movement assessment. Four patients with spinal cord injury participated in the study to assess their trunk range of motion and muscle strength. Results demonstrate that the trunk range of motion determines the center of pressure metrics in lateral bending experiments. Furthermore, RoboBDsys-II exhibits excellent test-retest reliability in lateral bending experiments and can reveal the muscle strength differences in different directions. The system has potential advantage in the trunk ability assessment.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2023 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR58425.2023.10304681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估躯干控制能力对于指导患者进行适当的功能训练具有重要意义。大多数现有设备只有单一的评估功能,导致评估时间延长和异步。具有多维评估功能的设备可以解决这些限制。这项研究利用机器人支架RoboBDsys II来评估脊柱疾病患者的躯干能力,并验证其有效性。该设备可以同时收集运动学、动力学和压力中心数据,减少评估时间,实现同时评估。力平台设计用于测量压力中心,并开发了用于冠状运动评估的平行模块的力控制。四名脊髓损伤患者参与了这项研究,以评估他们的躯干运动范围和肌肉力量。结果表明,躯干的运动范围决定了侧向弯曲实验中压力度量的中心。此外,RoboBDsys II在侧弯实验中表现出优异的重测可靠性,可以揭示不同方向的肌肉力量差异。该系统在干线能力评估方面具有潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robotic Brace Based Multi-Dimensional Assessment for Trunk Ability: A Preliminary Study in Patients with Spinal Cord Injury.

Evaluating trunk control ability is significant in guiding patients towards proper functional training. Most existing devices have only a singular assessment function, resulting in prolonged and asynchronous assessments. Devices with multi-dimensional assessment capabilities may address these limitations. This study utilizes a robotic brace, RoboBDsys-II, to assess the trunk ability of individuals with spinal disorders and to validate its effectiveness. The device can simultaneously collect kinematic, kinetic, and center of pressure data, reducing the assessment time and enabling the simultaneous assessment. The force platform is designed to measure the center of pressure and the force control of the parallel module is developed for the coronal movement assessment. Four patients with spinal cord injury participated in the study to assess their trunk range of motion and muscle strength. Results demonstrate that the trunk range of motion determines the center of pressure metrics in lateral bending experiments. Furthermore, RoboBDsys-II exhibits excellent test-retest reliability in lateral bending experiments and can reveal the muscle strength differences in different directions. The system has potential advantage in the trunk ability assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Individualized Three-Dimensional Gait Pattern Generator for Lower Limbs Rehabilitation Robots. Individualized Training of Back Muscles Using Iterative Learning Control of a Compliant Balance Board. Influence of Robotic Therapy on Severe Stroke Patients. INSPIIRE - A Modular and Passive Exoskeleton to Investigate Human Walking and Balance. Instrumented Upper Limb Functional Assessment Using a Robotic Exoskeleton: Normative References Intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1