Shi-Qi Cheng, Qian Lin, Shu-Lan Li, Ya-Xiao Guo, Xiao-Le Han, Yue Sun and Yi Liu
{"title":"二维分离膜超分子大环研究进展","authors":"Shi-Qi Cheng, Qian Lin, Shu-Lan Li, Ya-Xiao Guo, Xiao-Le Han, Yue Sun and Yi Liu","doi":"10.1039/D3GC01996A","DOIUrl":null,"url":null,"abstract":"<p >Precise and efficient separation of molecules and ions is important in many fields, including the chemical industry, textiles, and medicine. Two-dimensional (2D) materials with high specific surface areas and atomic thickness are an excellent choice for membrane building blocks. However, stacking nanosheets face-to-face usually prevents the transport of molecules or ions across such 2D membranes, thereby reducing their flux. Supramolecular macrocyclic hosts contain cucurbiturils, cyclodextrins, pillararenes, crown ethers, and calixarenes, which afford macrocyclic cavities with rigid structures that are easy to be functionalized. Thus, it is possible to construct membranes using 2D materials as “beams” and supramolecular macrocyclic compounds as “columns”. This strategy has been applied to overcome challenges related to the permeability–selectivity trade-off. Supramolecular 2D membranes have been widely used in a wide range of critical separations, including water purification, enantiomer separation, ion extraction and separation, and gas separation. This review provides a new perspective to inspire researchers to develop promising 2D supramolecular membranes with high selectivity, mild flux, and appreciable reversibility.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 18","pages":" 7026-7040"},"PeriodicalIF":9.3000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in supramolecular macrocycles for two-dimensional membranes for separations\",\"authors\":\"Shi-Qi Cheng, Qian Lin, Shu-Lan Li, Ya-Xiao Guo, Xiao-Le Han, Yue Sun and Yi Liu\",\"doi\":\"10.1039/D3GC01996A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Precise and efficient separation of molecules and ions is important in many fields, including the chemical industry, textiles, and medicine. Two-dimensional (2D) materials with high specific surface areas and atomic thickness are an excellent choice for membrane building blocks. However, stacking nanosheets face-to-face usually prevents the transport of molecules or ions across such 2D membranes, thereby reducing their flux. Supramolecular macrocyclic hosts contain cucurbiturils, cyclodextrins, pillararenes, crown ethers, and calixarenes, which afford macrocyclic cavities with rigid structures that are easy to be functionalized. Thus, it is possible to construct membranes using 2D materials as “beams” and supramolecular macrocyclic compounds as “columns”. This strategy has been applied to overcome challenges related to the permeability–selectivity trade-off. Supramolecular 2D membranes have been widely used in a wide range of critical separations, including water purification, enantiomer separation, ion extraction and separation, and gas separation. This review provides a new perspective to inspire researchers to develop promising 2D supramolecular membranes with high selectivity, mild flux, and appreciable reversibility.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 18\",\"pages\":\" 7026-7040\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc01996a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc01996a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advancements in supramolecular macrocycles for two-dimensional membranes for separations
Precise and efficient separation of molecules and ions is important in many fields, including the chemical industry, textiles, and medicine. Two-dimensional (2D) materials with high specific surface areas and atomic thickness are an excellent choice for membrane building blocks. However, stacking nanosheets face-to-face usually prevents the transport of molecules or ions across such 2D membranes, thereby reducing their flux. Supramolecular macrocyclic hosts contain cucurbiturils, cyclodextrins, pillararenes, crown ethers, and calixarenes, which afford macrocyclic cavities with rigid structures that are easy to be functionalized. Thus, it is possible to construct membranes using 2D materials as “beams” and supramolecular macrocyclic compounds as “columns”. This strategy has been applied to overcome challenges related to the permeability–selectivity trade-off. Supramolecular 2D membranes have been widely used in a wide range of critical separations, including water purification, enantiomer separation, ion extraction and separation, and gas separation. This review provides a new perspective to inspire researchers to develop promising 2D supramolecular membranes with high selectivity, mild flux, and appreciable reversibility.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.