可充电碱金属-空气电池的研究进展

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2016-04-01 DOI:10.1016/j.gee.2016.04.004
Xin Zhang, Xin-Gai Wang, Zhaojun Xie, Zhen Zhou
{"title":"可充电碱金属-空气电池的研究进展","authors":"Xin Zhang,&nbsp;Xin-Gai Wang,&nbsp;Zhaojun Xie,&nbsp;Zhen Zhou","doi":"10.1016/j.gee.2016.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Rechargeable alkali metal–air batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metal–air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal–air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal–air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal–air batteries.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gee.2016.04.004","citationCount":"207","resultStr":"{\"title\":\"Recent progress in rechargeable alkali metal–air batteries\",\"authors\":\"Xin Zhang,&nbsp;Xin-Gai Wang,&nbsp;Zhaojun Xie,&nbsp;Zhen Zhou\",\"doi\":\"10.1016/j.gee.2016.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rechargeable alkali metal–air batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metal–air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal–air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal–air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal–air batteries.</p></div>\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gee.2016.04.004\",\"citationCount\":\"207\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246802571630019X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246802571630019X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 207

摘要

可充电碱金属-空气电池由于其高能量密度而被认为是电动汽车最有前途的动力源。然而,金属-空气电池的实际应用仍然具有挑战性。在过去的十年里,人们制定并探索了许多策略,促进了金属-空气电池的发展。反应机理已逐渐阐明,催化剂已被合理设计用于空气阴极。在这篇综述中,我们从四个部分总结了碱金属-空气电池的最新发展:金属阳极、电解质、空气阴极和反应气体,其中我们强调了该领域的重要成就。最后讨论了碱金属-空气电池未来发展中存在的问题和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent progress in rechargeable alkali metal–air batteries

Rechargeable alkali metal–air batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metal–air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal–air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal–air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal–air batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1