机械强度强的多孔生物陶瓷管通过提供长期结构稳定性和促进成骨促进大节段骨缺损修复

Q1 Medicine Engineered regeneration Pub Date : 2023-10-24 DOI:10.1016/j.engreg.2023.10.001
Lijun Xie , Jiahao Zhang , Hangxiang Sun , Zehao Chen , Wangsiyuan Teng , Xupeng Chai , Cong Wang , Xianyan Yang , Yifan Li , Sanzhong Xu , Zhongru Gou , Zhaoming Ye
{"title":"机械强度强的多孔生物陶瓷管通过提供长期结构稳定性和促进成骨促进大节段骨缺损修复","authors":"Lijun Xie ,&nbsp;Jiahao Zhang ,&nbsp;Hangxiang Sun ,&nbsp;Zehao Chen ,&nbsp;Wangsiyuan Teng ,&nbsp;Xupeng Chai ,&nbsp;Cong Wang ,&nbsp;Xianyan Yang ,&nbsp;Yifan Li ,&nbsp;Sanzhong Xu ,&nbsp;Zhongru Gou ,&nbsp;Zhaoming Ye","doi":"10.1016/j.engreg.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanically strong magnesium-doped Ca-silicate bioceramic scaffolds have many advantages in repairing large segmental bone defects. Herein we combine β-TCP with 6 mol% magnesium-doped calcium silicate (Mg6) at three different ratios (TCP, TCP+15 %Mg6, TCP+85 %Mg6) to find an appropriate ratio which can exert considerable influence on bone regeneration. In this study, the bioceramic scaffolds were assessed for mechanical strength, bioactive ion release, biocompatibility, and osteogenic capacity through <em>in vitro</em> testing. Additionally, the potential for promoting bone regeneration was investigated through <em>in vivo</em> implantation of porous tube-like scaffolds. The results showed that the compressive strength increased with the augmentation of Mg6 component. Especially the compressive strength of the TCP+85 %Mg6 group reached 38.1 ± 3.8 MPa, three times that of the other two groups. Furthermore, extensive <em>in vivo</em> investigations revealed that the TCP+85 %Mg6 bioceramic scaffolds were particularly beneficial for the osteogenic capacity of critical-sized femoral defects (20 mm in length). Altogether, magnesium doping in bioceramic implants is a promising strategy to provide stronger mechanical support and enhance osteogenesis to accelerate the repair of large defects.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 1","pages":"Pages 1-10"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically strong porous bioceramic tubes facilitate large segmental bone defect repair by providing long-term structurally stability and promoting osteogenesis\",\"authors\":\"Lijun Xie ,&nbsp;Jiahao Zhang ,&nbsp;Hangxiang Sun ,&nbsp;Zehao Chen ,&nbsp;Wangsiyuan Teng ,&nbsp;Xupeng Chai ,&nbsp;Cong Wang ,&nbsp;Xianyan Yang ,&nbsp;Yifan Li ,&nbsp;Sanzhong Xu ,&nbsp;Zhongru Gou ,&nbsp;Zhaoming Ye\",\"doi\":\"10.1016/j.engreg.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanically strong magnesium-doped Ca-silicate bioceramic scaffolds have many advantages in repairing large segmental bone defects. Herein we combine β-TCP with 6 mol% magnesium-doped calcium silicate (Mg6) at three different ratios (TCP, TCP+15 %Mg6, TCP+85 %Mg6) to find an appropriate ratio which can exert considerable influence on bone regeneration. In this study, the bioceramic scaffolds were assessed for mechanical strength, bioactive ion release, biocompatibility, and osteogenic capacity through <em>in vitro</em> testing. Additionally, the potential for promoting bone regeneration was investigated through <em>in vivo</em> implantation of porous tube-like scaffolds. The results showed that the compressive strength increased with the augmentation of Mg6 component. Especially the compressive strength of the TCP+85 %Mg6 group reached 38.1 ± 3.8 MPa, three times that of the other two groups. Furthermore, extensive <em>in vivo</em> investigations revealed that the TCP+85 %Mg6 bioceramic scaffolds were particularly beneficial for the osteogenic capacity of critical-sized femoral defects (20 mm in length). Altogether, magnesium doping in bioceramic implants is a promising strategy to provide stronger mechanical support and enhance osteogenesis to accelerate the repair of large defects.</p></div>\",\"PeriodicalId\":72919,\"journal\":{\"name\":\"Engineered regeneration\",\"volume\":\"5 1\",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineered regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666138123000518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138123000518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

机械强度强的镁掺杂硅酸钙生物陶瓷支架在修复大块骨缺损方面具有许多优点。在此,我们将β-TCP与6mol%镁掺杂的硅酸钙(Mg6)以三种不同的比例(TCP、TCP+15%Mg6、TCP+85%Mg6)相结合,以找到一个合适的比例,该比例可以对骨再生产生相当大的影响。在本研究中,通过体外测试评估了生物陶瓷支架的机械强度、生物活性离子释放、生物相容性和成骨能力。此外,通过体内植入多孔管状支架研究了促进骨再生的潜力。结果表明,随着Mg6组分的增加,抗压强度增加。特别是TCP+85%Mg6组的抗压强度达到38.1±3.8MPa,是其他两组的三倍。此外,广泛的体内研究表明,TCP+85%Mg6生物陶瓷支架对临界尺寸股骨缺损(长度20mm)的成骨能力特别有益。总之,在生物陶瓷植入物中掺镁是一种很有前途的策略,可以提供更强的机械支撑,增强成骨能力,加速大缺陷的修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanically strong porous bioceramic tubes facilitate large segmental bone defect repair by providing long-term structurally stability and promoting osteogenesis

Mechanically strong magnesium-doped Ca-silicate bioceramic scaffolds have many advantages in repairing large segmental bone defects. Herein we combine β-TCP with 6 mol% magnesium-doped calcium silicate (Mg6) at three different ratios (TCP, TCP+15 %Mg6, TCP+85 %Mg6) to find an appropriate ratio which can exert considerable influence on bone regeneration. In this study, the bioceramic scaffolds were assessed for mechanical strength, bioactive ion release, biocompatibility, and osteogenic capacity through in vitro testing. Additionally, the potential for promoting bone regeneration was investigated through in vivo implantation of porous tube-like scaffolds. The results showed that the compressive strength increased with the augmentation of Mg6 component. Especially the compressive strength of the TCP+85 %Mg6 group reached 38.1 ± 3.8 MPa, three times that of the other two groups. Furthermore, extensive in vivo investigations revealed that the TCP+85 %Mg6 bioceramic scaffolds were particularly beneficial for the osteogenic capacity of critical-sized femoral defects (20 mm in length). Altogether, magnesium doping in bioceramic implants is a promising strategy to provide stronger mechanical support and enhance osteogenesis to accelerate the repair of large defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
期刊最新文献
A patch comprising human umbilical cord-derived hydrogel and mesenchymal stem cells promotes pressure ulcer wound healing Cochlear implant/MXene-based electroacoustic stimulation modulates the growth and maturation of spiral ganglion neurons Advancing engineered approaches for sustainable wound regeneration and repair: Harnessing the potential of green synthesized silver nanoparticles Advances in nano silver-based biomaterials and their biomedical applications Comparison of two hemostatic skin adhesive dressings, incorporating multi-metal bioactive glass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1