基于深度强化学习的TDD多用户MIMO系统智能反射面优化

IF 4.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Wireless Communications Letters Pub Date : 2023-08-03 DOI:10.1109/LWC.2023.3301496
Fengyu Zhao;Wen Chen;Ziwei Liu;Jun Li;Qingqing Wu
{"title":"基于深度强化学习的TDD多用户MIMO系统智能反射面优化","authors":"Fengyu Zhao;Wen Chen;Ziwei Liu;Jun Li;Qingqing Wu","doi":"10.1109/LWC.2023.3301496","DOIUrl":null,"url":null,"abstract":"In this letter, we investigate the discrete phase shift design of the intelligent reflecting surface (IRS) in a time-division duplexing (TDD) multi-user multiple-input-multiple-output (MIMO) system. We modify the design of deep reinforcement learning (DRL) scheme so that we can maximizing the average downlink data transmission rate free from the sub-channel channel state information (CSI). Based on the characteristics of the model, we modify the “proximal policy optimization (PPO)” algorithm and integrate gated recurrent unit (GRU) to tackle the non-convex optimization problem. Simulation results show that the performance of the proposed PPO-GRU surpasses the benchmarks in terms of performance, convergence speed, and training stability.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"12 11","pages":"1951-1955"},"PeriodicalIF":4.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning-Based Intelligent Reflecting Surface Optimization for TDD Multi-User MIMO Systems\",\"authors\":\"Fengyu Zhao;Wen Chen;Ziwei Liu;Jun Li;Qingqing Wu\",\"doi\":\"10.1109/LWC.2023.3301496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we investigate the discrete phase shift design of the intelligent reflecting surface (IRS) in a time-division duplexing (TDD) multi-user multiple-input-multiple-output (MIMO) system. We modify the design of deep reinforcement learning (DRL) scheme so that we can maximizing the average downlink data transmission rate free from the sub-channel channel state information (CSI). Based on the characteristics of the model, we modify the “proximal policy optimization (PPO)” algorithm and integrate gated recurrent unit (GRU) to tackle the non-convex optimization problem. Simulation results show that the performance of the proposed PPO-GRU surpasses the benchmarks in terms of performance, convergence speed, and training stability.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"12 11\",\"pages\":\"1951-1955\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10206034/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10206034/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们研究了时分双工(TDD)多用户多输入多输出(MIMO)系统中智能反射面(IRS)的离散相移设计。我们修改了深度强化学习(DRL)方案的设计,以便在不受子信道状态信息(CSI)影响的情况下最大化平均下行链路数据传输速率。基于模型的特点,我们修改了“近端策略优化(PPO)”算法,并集成了门控递归单元(GRU)来解决非凸优化问题。仿真结果表明,所提出的PPO-GRU在性能、收敛速度和训练稳定性方面都超过了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning-Based Intelligent Reflecting Surface Optimization for TDD Multi-User MIMO Systems
In this letter, we investigate the discrete phase shift design of the intelligent reflecting surface (IRS) in a time-division duplexing (TDD) multi-user multiple-input-multiple-output (MIMO) system. We modify the design of deep reinforcement learning (DRL) scheme so that we can maximizing the average downlink data transmission rate free from the sub-channel channel state information (CSI). Based on the characteristics of the model, we modify the “proximal policy optimization (PPO)” algorithm and integrate gated recurrent unit (GRU) to tackle the non-convex optimization problem. Simulation results show that the performance of the proposed PPO-GRU surpasses the benchmarks in terms of performance, convergence speed, and training stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
期刊最新文献
Feedback Design With VQ-VAE for Robust Precoding in Multi-User FDD Systems Robotic Sensor Network: Achieving Mutual Communication Control Assistance With Fast Cross-Layer Optimization EMR Safety in Multiple Wireless Chargers Powered IoT Networks OFDM-Based In-Band Full-Duplex ISAC Systems Peak Downlink Rate Maximization and Joint Beamforming Optimization for RIS-Aided THz OFDMA UM-MIMO Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1