{"title":"主空腔形成过程中液滴材料的转移","authors":"Yu. D. Chashechkin, A. Yu. Ilinykh","doi":"10.1134/S1028335822120023","DOIUrl":null,"url":null,"abstract":"<p>For the first time, the transfer of the substance of a free-falling drop into a resting target fluid at the stage of formation of a primary cavity was tracked by high-speed video recording. In the experiments, water-diluted drops in a ratio of 1 : 100 ink solution or a saturated solution of baking soda with a diameter of <span>\\(D = 0.43\\)</span> cm fell at a velocity of <i>U</i> = 3.1 m/s into water or a 20% ammonium thiocyanate solution in the splash formation mode. In all experiments, the wall of the growing cavity is pierced by thin fibers containing drop material, which form an intermediate fine-structured layer. After the end of the fiber growth stage with a duration of 7–8 ms and diffusion smoothing of the concentration gradients, a liquid layer of intermediate density with a thickness of 1.5 to 0.7 mm is formed around the growing cavity. The layer is separated by a sharp boundary from the target fluid. A new group of inclined fibrous loops is formed in the wake of the collapsing cavity.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":"68 1","pages":"14 - 23"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transfer of Drop Material during the Formation of a Primary Cavity\",\"authors\":\"Yu. D. Chashechkin, A. Yu. Ilinykh\",\"doi\":\"10.1134/S1028335822120023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the first time, the transfer of the substance of a free-falling drop into a resting target fluid at the stage of formation of a primary cavity was tracked by high-speed video recording. In the experiments, water-diluted drops in a ratio of 1 : 100 ink solution or a saturated solution of baking soda with a diameter of <span>\\\\(D = 0.43\\\\)</span> cm fell at a velocity of <i>U</i> = 3.1 m/s into water or a 20% ammonium thiocyanate solution in the splash formation mode. In all experiments, the wall of the growing cavity is pierced by thin fibers containing drop material, which form an intermediate fine-structured layer. After the end of the fiber growth stage with a duration of 7–8 ms and diffusion smoothing of the concentration gradients, a liquid layer of intermediate density with a thickness of 1.5 to 0.7 mm is formed around the growing cavity. The layer is separated by a sharp boundary from the target fluid. A new group of inclined fibrous loops is formed in the wake of the collapsing cavity.</p>\",\"PeriodicalId\":533,\"journal\":{\"name\":\"Doklady Physics\",\"volume\":\"68 1\",\"pages\":\"14 - 23\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1028335822120023\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335822120023","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Transfer of Drop Material during the Formation of a Primary Cavity
For the first time, the transfer of the substance of a free-falling drop into a resting target fluid at the stage of formation of a primary cavity was tracked by high-speed video recording. In the experiments, water-diluted drops in a ratio of 1 : 100 ink solution or a saturated solution of baking soda with a diameter of \(D = 0.43\) cm fell at a velocity of U = 3.1 m/s into water or a 20% ammonium thiocyanate solution in the splash formation mode. In all experiments, the wall of the growing cavity is pierced by thin fibers containing drop material, which form an intermediate fine-structured layer. After the end of the fiber growth stage with a duration of 7–8 ms and diffusion smoothing of the concentration gradients, a liquid layer of intermediate density with a thickness of 1.5 to 0.7 mm is formed around the growing cavity. The layer is separated by a sharp boundary from the target fluid. A new group of inclined fibrous loops is formed in the wake of the collapsing cavity.
期刊介绍:
Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.