{"title":"基于纠缠的非对称量子纠错的量子成本优化算法","authors":"Swathi Mummadi, Bhawana Rudra","doi":"10.1007/s10773-023-05497-4","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of reversible operations has been increasing day by day to overcome the drawbacks of irreversible computation. Quantum computers perform operations exponentially faster by taking advantage of reversible operations. Reversible operations play an essential role in developing energy and cost-efficient circuits. The efficiency of a quantum circuit is measured in terms of Quantum cost and Quantum depth. In this paper, we propose an optimization algorithm for Entanglement-based Quantum error correction, which plays a crucial role in various applications like quantum teleportation, secure communications, quantum key distribution, etc. We performed the experiments using Qiskit and RCViewer+ tools. Qiskit tool is used to run the quantum algorithms and measure the quantum depth; the RCViewer+ tool is used to measure the quantum cost. The proposed algorithm optimizes the quantum cost and depth compared to the existing approaches.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Cost Optimization Algorithm for Entanglement-based Asymmetric Quantum Error Correction\",\"authors\":\"Swathi Mummadi, Bhawana Rudra\",\"doi\":\"10.1007/s10773-023-05497-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The importance of reversible operations has been increasing day by day to overcome the drawbacks of irreversible computation. Quantum computers perform operations exponentially faster by taking advantage of reversible operations. Reversible operations play an essential role in developing energy and cost-efficient circuits. The efficiency of a quantum circuit is measured in terms of Quantum cost and Quantum depth. In this paper, we propose an optimization algorithm for Entanglement-based Quantum error correction, which plays a crucial role in various applications like quantum teleportation, secure communications, quantum key distribution, etc. We performed the experiments using Qiskit and RCViewer+ tools. Qiskit tool is used to run the quantum algorithms and measure the quantum depth; the RCViewer+ tool is used to measure the quantum cost. The proposed algorithm optimizes the quantum cost and depth compared to the existing approaches.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"62 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-023-05497-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05497-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum Cost Optimization Algorithm for Entanglement-based Asymmetric Quantum Error Correction
The importance of reversible operations has been increasing day by day to overcome the drawbacks of irreversible computation. Quantum computers perform operations exponentially faster by taking advantage of reversible operations. Reversible operations play an essential role in developing energy and cost-efficient circuits. The efficiency of a quantum circuit is measured in terms of Quantum cost and Quantum depth. In this paper, we propose an optimization algorithm for Entanglement-based Quantum error correction, which plays a crucial role in various applications like quantum teleportation, secure communications, quantum key distribution, etc. We performed the experiments using Qiskit and RCViewer+ tools. Qiskit tool is used to run the quantum algorithms and measure the quantum depth; the RCViewer+ tool is used to measure the quantum cost. The proposed algorithm optimizes the quantum cost and depth compared to the existing approaches.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.