Zhong-Liang Xiang, Rui Wang, Xiang-Ru Yu, Bo Li, Yuan Yu
{"title":"多元时间序列相似性测度的实验分析及其在股票市场中的应用","authors":"Zhong-Liang Xiang, Rui Wang, Xiang-Ru Yu, Bo Li, Yuan Yu","doi":"10.1007/s10489-023-04874-0","DOIUrl":null,"url":null,"abstract":"<div><p>Similarity measurement takes on critical significance in strategies that seek similar stocks based on historical data to make predictions. Stock data refers to a multidimensional time series with features of non-linearity and high noise, posing a challenge to the practical design of similarity measurement. However, the existing similarity measurements cannot better address the negative effects of the singularity of data and correlations of data in multidimensional stock price series, such that the performance of stock prediction will be reduced. In this study, a novel method named dynamic multi-factor similarity measurement (DMFSM) is proposed to accurately describe the similarity between a pair of multidimensional time series. DMFSM is capable of eliminating effects exerted by singularity and correlations of data using dynamic time warping (DTW) with Mahalanobis distance embedded and weights of series nodes in multidimensional time series. To validate the efficiency of DMFSM, several experiments were performed on a total of 675 stocks, which comprised 290 stocks from the Shanghai Stock Exchange, 285 stocks from the Shenzhen Stock Exchange, as well as 100 stocks from the Growth Enterprise Market of the Shenzhen Stock Exchange. The experiment results for mean absolute error of predictions indicated that DMFSM (0.018) outperformed similarity measurements (e.g., Euclidean distance (0.023), DTW (0.054), and dynamic multi-perspective personalized similarity measurement (0.023)).</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"53 21","pages":"25450 - 25466"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis of similarity measurements for multivariate time series and its application to the stock market\",\"authors\":\"Zhong-Liang Xiang, Rui Wang, Xiang-Ru Yu, Bo Li, Yuan Yu\",\"doi\":\"10.1007/s10489-023-04874-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Similarity measurement takes on critical significance in strategies that seek similar stocks based on historical data to make predictions. Stock data refers to a multidimensional time series with features of non-linearity and high noise, posing a challenge to the practical design of similarity measurement. However, the existing similarity measurements cannot better address the negative effects of the singularity of data and correlations of data in multidimensional stock price series, such that the performance of stock prediction will be reduced. In this study, a novel method named dynamic multi-factor similarity measurement (DMFSM) is proposed to accurately describe the similarity between a pair of multidimensional time series. DMFSM is capable of eliminating effects exerted by singularity and correlations of data using dynamic time warping (DTW) with Mahalanobis distance embedded and weights of series nodes in multidimensional time series. To validate the efficiency of DMFSM, several experiments were performed on a total of 675 stocks, which comprised 290 stocks from the Shanghai Stock Exchange, 285 stocks from the Shenzhen Stock Exchange, as well as 100 stocks from the Growth Enterprise Market of the Shenzhen Stock Exchange. The experiment results for mean absolute error of predictions indicated that DMFSM (0.018) outperformed similarity measurements (e.g., Euclidean distance (0.023), DTW (0.054), and dynamic multi-perspective personalized similarity measurement (0.023)).</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"53 21\",\"pages\":\"25450 - 25466\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-023-04874-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-023-04874-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Experimental analysis of similarity measurements for multivariate time series and its application to the stock market
Similarity measurement takes on critical significance in strategies that seek similar stocks based on historical data to make predictions. Stock data refers to a multidimensional time series with features of non-linearity and high noise, posing a challenge to the practical design of similarity measurement. However, the existing similarity measurements cannot better address the negative effects of the singularity of data and correlations of data in multidimensional stock price series, such that the performance of stock prediction will be reduced. In this study, a novel method named dynamic multi-factor similarity measurement (DMFSM) is proposed to accurately describe the similarity between a pair of multidimensional time series. DMFSM is capable of eliminating effects exerted by singularity and correlations of data using dynamic time warping (DTW) with Mahalanobis distance embedded and weights of series nodes in multidimensional time series. To validate the efficiency of DMFSM, several experiments were performed on a total of 675 stocks, which comprised 290 stocks from the Shanghai Stock Exchange, 285 stocks from the Shenzhen Stock Exchange, as well as 100 stocks from the Growth Enterprise Market of the Shenzhen Stock Exchange. The experiment results for mean absolute error of predictions indicated that DMFSM (0.018) outperformed similarity measurements (e.g., Euclidean distance (0.023), DTW (0.054), and dynamic multi-perspective personalized similarity measurement (0.023)).
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.