{"title":"DyGCN-LSTM:一种用于多步流量预测的基于动态GCN-LSTM的编码器-解码器框架","authors":"Rahul Kumar, João Mendes Moreira, Joydeep Chandra","doi":"10.1007/s10489-023-04871-3","DOIUrl":null,"url":null,"abstract":"<div><p>Intelligent transportation systems (ITS) are gaining attraction in large cities for better traffic management. Traffic forecasting is an important part of ITS, but a difficult one due to the intricate spatiotemporal relationships of traffic between different locations. Despite the fact that remote or far sensors may have temporal and spatial similarities with the predicting sensor, existing traffic forecasting research focuses primarily on modeling correlations between neighboring sensors while disregarding correlations between remote sensors. Furthermore, existing methods for capturing spatial dependencies, such as graph convolutional networks (GCNs), are unable to capture the dynamic spatial dependence in traffic systems. Self-attention-based techniques for modeling dynamic correlations of all sensors currently in use overlook the hierarchical features of roads and have quadratic computational complexity. Our paper presents a new Dynamic Graph Convolution LSTM Network (DyGCN-LSTM) to address the aforementioned limitations. The novelty of DyGCN-LSTM is that it can model the underlying non-linear spatial and temporal correlations of remotely located sensors at the same time. Experimental investigations conducted using four real-world traffic data sets show that the suggested approach is superior to state-of-the-art benchmarks by <span>\\(\\varvec{25\\%}\\)</span> in terms of RMSE.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"53 21","pages":"25388 - 25411"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DyGCN-LSTM: A dynamic GCN-LSTM based encoder-decoder framework for multistep traffic prediction\",\"authors\":\"Rahul Kumar, João Mendes Moreira, Joydeep Chandra\",\"doi\":\"10.1007/s10489-023-04871-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intelligent transportation systems (ITS) are gaining attraction in large cities for better traffic management. Traffic forecasting is an important part of ITS, but a difficult one due to the intricate spatiotemporal relationships of traffic between different locations. Despite the fact that remote or far sensors may have temporal and spatial similarities with the predicting sensor, existing traffic forecasting research focuses primarily on modeling correlations between neighboring sensors while disregarding correlations between remote sensors. Furthermore, existing methods for capturing spatial dependencies, such as graph convolutional networks (GCNs), are unable to capture the dynamic spatial dependence in traffic systems. Self-attention-based techniques for modeling dynamic correlations of all sensors currently in use overlook the hierarchical features of roads and have quadratic computational complexity. Our paper presents a new Dynamic Graph Convolution LSTM Network (DyGCN-LSTM) to address the aforementioned limitations. The novelty of DyGCN-LSTM is that it can model the underlying non-linear spatial and temporal correlations of remotely located sensors at the same time. Experimental investigations conducted using four real-world traffic data sets show that the suggested approach is superior to state-of-the-art benchmarks by <span>\\\\(\\\\varvec{25\\\\%}\\\\)</span> in terms of RMSE.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"53 21\",\"pages\":\"25388 - 25411\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-023-04871-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-023-04871-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DyGCN-LSTM: A dynamic GCN-LSTM based encoder-decoder framework for multistep traffic prediction
Intelligent transportation systems (ITS) are gaining attraction in large cities for better traffic management. Traffic forecasting is an important part of ITS, but a difficult one due to the intricate spatiotemporal relationships of traffic between different locations. Despite the fact that remote or far sensors may have temporal and spatial similarities with the predicting sensor, existing traffic forecasting research focuses primarily on modeling correlations between neighboring sensors while disregarding correlations between remote sensors. Furthermore, existing methods for capturing spatial dependencies, such as graph convolutional networks (GCNs), are unable to capture the dynamic spatial dependence in traffic systems. Self-attention-based techniques for modeling dynamic correlations of all sensors currently in use overlook the hierarchical features of roads and have quadratic computational complexity. Our paper presents a new Dynamic Graph Convolution LSTM Network (DyGCN-LSTM) to address the aforementioned limitations. The novelty of DyGCN-LSTM is that it can model the underlying non-linear spatial and temporal correlations of remotely located sensors at the same time. Experimental investigations conducted using four real-world traffic data sets show that the suggested approach is superior to state-of-the-art benchmarks by \(\varvec{25\%}\) in terms of RMSE.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.