花粉在真实城市环境中的扩散和沉积:一项计算流体动力学研究

IF 1.6 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Aerosol Science and Engineering Pub Date : 2023-10-13 DOI:10.1007/s41810-023-00198-1
Prosun Roy, L.-W. Antony Chen, Yi-Tung Chen, Sajjad Ahmad, Eakalak Khan, Mark Buttner
{"title":"花粉在真实城市环境中的扩散和沉积:一项计算流体动力学研究","authors":"Prosun Roy,&nbsp;L.-W. Antony Chen,&nbsp;Yi-Tung Chen,&nbsp;Sajjad Ahmad,&nbsp;Eakalak Khan,&nbsp;Mark Buttner","doi":"10.1007/s41810-023-00198-1","DOIUrl":null,"url":null,"abstract":"<div><p>Due to concern with the health and environmental impacts of allergic pine pollen on an urban community in Las Vegas, Nevada, a computation fluid dynamics (CFD) modeling framework was established for investigating the dispersion and deposition of pollen emitted from inventoried pine trees. The framework employs a Eulerian–Lagrangian approach with mesh grids of &lt; 10 m to simulate wind flows and track pollen particle movements around real-world building blocks. The initial assessment focused on a spring pollen episode and a low period following the episode. Model results highlighted that building structures constrained pollen transportation by reducing wind speeds, especially during the low period, and altered pollen distributions, creating hot spots and cold spots at the windward and leeward sides of buildings, respectively, on the pollen trajectories. The majority of pollen particles appear to deposit onto the ground or buildings 1–3 km downwind from the sources through gravitational settling. Multiple model validations are presented, while limitations and potential applications are discussed.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pollen Dispersion and Deposition in Real-World Urban Settings: A Computational Fluid Dynamic Study\",\"authors\":\"Prosun Roy,&nbsp;L.-W. Antony Chen,&nbsp;Yi-Tung Chen,&nbsp;Sajjad Ahmad,&nbsp;Eakalak Khan,&nbsp;Mark Buttner\",\"doi\":\"10.1007/s41810-023-00198-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to concern with the health and environmental impacts of allergic pine pollen on an urban community in Las Vegas, Nevada, a computation fluid dynamics (CFD) modeling framework was established for investigating the dispersion and deposition of pollen emitted from inventoried pine trees. The framework employs a Eulerian–Lagrangian approach with mesh grids of &lt; 10 m to simulate wind flows and track pollen particle movements around real-world building blocks. The initial assessment focused on a spring pollen episode and a low period following the episode. Model results highlighted that building structures constrained pollen transportation by reducing wind speeds, especially during the low period, and altered pollen distributions, creating hot spots and cold spots at the windward and leeward sides of buildings, respectively, on the pollen trajectories. The majority of pollen particles appear to deposit onto the ground or buildings 1–3 km downwind from the sources through gravitational settling. Multiple model validations are presented, while limitations and potential applications are discussed.</p></div>\",\"PeriodicalId\":36991,\"journal\":{\"name\":\"Aerosol Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41810-023-00198-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-023-00198-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于担心过敏性松树花粉对内华达州拉斯维加斯城市社区的健康和环境影响,建立了一个计算流体动力学(CFD)建模框架,用于研究库存松树花粉的扩散和沉积。该框架采用欧拉-拉格朗日方法,网格为 <; 10米,以模拟气流并跟踪花粉颗粒在真实世界建筑块周围的运动。最初的评估集中在春季花粉期和花粉期后的低潮期。模型结果强调,建筑物结构通过降低风速(尤其是在低风速期间)来限制花粉运输,并改变花粉分布,在花粉轨迹上分别在建筑物的向风侧和背风侧产生热点和冷点。大多数花粉颗粒似乎通过重力沉降沉积在距离花粉源1-3公里的下风处的地面或建筑物上。介绍了多种模型验证,同时讨论了其局限性和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pollen Dispersion and Deposition in Real-World Urban Settings: A Computational Fluid Dynamic Study

Due to concern with the health and environmental impacts of allergic pine pollen on an urban community in Las Vegas, Nevada, a computation fluid dynamics (CFD) modeling framework was established for investigating the dispersion and deposition of pollen emitted from inventoried pine trees. The framework employs a Eulerian–Lagrangian approach with mesh grids of < 10 m to simulate wind flows and track pollen particle movements around real-world building blocks. The initial assessment focused on a spring pollen episode and a low period following the episode. Model results highlighted that building structures constrained pollen transportation by reducing wind speeds, especially during the low period, and altered pollen distributions, creating hot spots and cold spots at the windward and leeward sides of buildings, respectively, on the pollen trajectories. The majority of pollen particles appear to deposit onto the ground or buildings 1–3 km downwind from the sources through gravitational settling. Multiple model validations are presented, while limitations and potential applications are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol Science and Engineering
Aerosol Science and Engineering Environmental Science-Pollution
CiteScore
3.00
自引率
7.10%
发文量
42
期刊介绍: ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications.  ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.
期刊最新文献
Bibliometric Analysis on Global Research Trends in Air Pollution Prediction Research Using Machine Learning from 1991–2023 Using Scopus Database Impacts of Meteorological Parameters on COVID-19 Transmission Trends in the Central Part of Thailand Change Characteristics and Source Apportionment of Ozone Pollution in Sanya City in 2019 Optimization of the Air Cleaning Properties of Fog Multi-perspective Investigations of Aerosol’s Non-linear Impact on Unmanned Aerial Vehicle for Air Pollution Control Applications Under Various Aerosol Working Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1