以用户为中心的量子基准测试套件和评估框架

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2023-10-31 DOI:10.1007/s11128-023-04154-3
WenBo Liu, Fei Wang, Han Lin, JianDong Shang
{"title":"以用户为中心的量子基准测试套件和评估框架","authors":"WenBo Liu,&nbsp;Fei Wang,&nbsp;Han Lin,&nbsp;JianDong Shang","doi":"10.1007/s11128-023-04154-3","DOIUrl":null,"url":null,"abstract":"<div><p>This article proposes a benchmark testing set and evaluation system for quantum computers. Our tests do not focus on the topology of quantum computers or the specific implementation details of preparing quantum bits. Instead, we examine the overall performance of quantum computers from the perspective of users. Inspired by traditional computer benchmark tests such as SPECCPU2017, we integrate existing scalable quantum applications and algorithms to generate a testing set that covers algorithms such as search, machine learning, factorization, portfolio optimization, and entanglement state preparation, effectively simulating real workloads. By running the testing set, we can understand the performance of current quantum computers and generate a comprehensive score by combining our evaluation system, which consists of sub-scores of various backend features, including quantum gate error rate, entanglement between quantum bits, cross talk, and connectivity. These sub-scores are calculated based on the program features of the testing cases combined with their running results, where the program features are analyzed through the logical circuits of the testing cases. We incorporate Hellinger fidelity and polarization rescaling into each benchmark to calculate the fidelity of the running results. Through our evaluation system, researchers can be guided toward research directions and understand how far quantum computers are from solving practical problems.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"22 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A user-centric quantum benchmarking test suite and evaluation framework\",\"authors\":\"WenBo Liu,&nbsp;Fei Wang,&nbsp;Han Lin,&nbsp;JianDong Shang\",\"doi\":\"10.1007/s11128-023-04154-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article proposes a benchmark testing set and evaluation system for quantum computers. Our tests do not focus on the topology of quantum computers or the specific implementation details of preparing quantum bits. Instead, we examine the overall performance of quantum computers from the perspective of users. Inspired by traditional computer benchmark tests such as SPECCPU2017, we integrate existing scalable quantum applications and algorithms to generate a testing set that covers algorithms such as search, machine learning, factorization, portfolio optimization, and entanglement state preparation, effectively simulating real workloads. By running the testing set, we can understand the performance of current quantum computers and generate a comprehensive score by combining our evaluation system, which consists of sub-scores of various backend features, including quantum gate error rate, entanglement between quantum bits, cross talk, and connectivity. These sub-scores are calculated based on the program features of the testing cases combined with their running results, where the program features are analyzed through the logical circuits of the testing cases. We incorporate Hellinger fidelity and polarization rescaling into each benchmark to calculate the fidelity of the running results. Through our evaluation system, researchers can be guided toward research directions and understand how far quantum computers are from solving practical problems.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"22 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-023-04154-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-023-04154-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个用于量子计算机的基准测试集和评估系统。我们的测试并不关注量子计算机的拓扑结构或制备量子比特的具体实现细节。相反,我们从用户的角度来考察量子计算机的整体性能。受SPECCPU2017等传统计算机基准测试的启发,我们集成了现有的可扩展量子应用程序和算法,生成了一个测试集,涵盖了搜索、机器学习、因子分解、组合优化和纠缠状态准备等算法,有效地模拟了真实的工作负载。通过运行测试集,我们可以了解当前量子计算机的性能,并通过结合我们的评估系统生成综合分数,该系统由各种后端特征的子分数组成,包括量子门错误率、量子比特之间的纠缠、串扰和连接性。这些子分数是根据测试用例的程序特征及其运行结果计算的,其中通过测试用例的逻辑电路来分析程序特征。我们将Hellinger保真度和偏振重缩放纳入每个基准,以计算运行结果的保真度。通过我们的评估系统,研究人员可以被引导到研究方向,并了解量子计算机离解决实际问题还有多远。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A user-centric quantum benchmarking test suite and evaluation framework

This article proposes a benchmark testing set and evaluation system for quantum computers. Our tests do not focus on the topology of quantum computers or the specific implementation details of preparing quantum bits. Instead, we examine the overall performance of quantum computers from the perspective of users. Inspired by traditional computer benchmark tests such as SPECCPU2017, we integrate existing scalable quantum applications and algorithms to generate a testing set that covers algorithms such as search, machine learning, factorization, portfolio optimization, and entanglement state preparation, effectively simulating real workloads. By running the testing set, we can understand the performance of current quantum computers and generate a comprehensive score by combining our evaluation system, which consists of sub-scores of various backend features, including quantum gate error rate, entanglement between quantum bits, cross talk, and connectivity. These sub-scores are calculated based on the program features of the testing cases combined with their running results, where the program features are analyzed through the logical circuits of the testing cases. We incorporate Hellinger fidelity and polarization rescaling into each benchmark to calculate the fidelity of the running results. Through our evaluation system, researchers can be guided toward research directions and understand how far quantum computers are from solving practical problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
Fast generation of GHZ state by designing the evolution operators with Rydberg superatom Quantum conference key agreement with phase noise resistance A privacy-preserving quantum authentication for vehicular communication Layered quantum secret sharing scheme for private data in cloud environment system Performance analysis and modeling for quantum computing simulation on distributed GPU platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1