U-统计估计量渐近方差的简单bootstrap估计

IF 2.9 4区 经济学 Q1 ECONOMICS Econometrics Journal Pub Date : 2017-07-13 DOI:10.1111/ectj.12099
Bo E. Honoré, Luojia Hu
{"title":"U-统计估计量渐近方差的简单bootstrap估计","authors":"Bo E. Honoré, Luojia Hu","doi":"10.1111/ectj.12099","DOIUrl":null,"url":null,"abstract":"The bootstrap is a popular and useful tool for estimating the asymptotic variance of complicated estimators. Ironically, the fact that the estimators are complicated can make the standard bootstrap computationally burdensome because it requires repeated re-calculation of the estimator. In Honore and Hu (2015), we propose a computationally simpler bootstrap procedure based on repeated re-calculation of one-dimensional estimators. The applicability of that approach is quite general. In this paper, we propose an alternative method which is specific to extremum estimators based on U-statistics. The contribution here is that rather than repeated re-calculating the U-statistic-based estimator, we can recalculate a related estimator based on single-sums. A simulation study suggests that the approach leads to a good approximation to the standard bootstrap, and that if this is the goal, then our approach is superior to numerical derivative methods.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"21 1","pages":"1-10"},"PeriodicalIF":2.9000,"publicationDate":"2017-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12099","citationCount":"3","resultStr":"{\"title\":\"Simpler bootstrap estimation of the asymptotic variance of U-statistic-based estimators\",\"authors\":\"Bo E. Honoré, Luojia Hu\",\"doi\":\"10.1111/ectj.12099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bootstrap is a popular and useful tool for estimating the asymptotic variance of complicated estimators. Ironically, the fact that the estimators are complicated can make the standard bootstrap computationally burdensome because it requires repeated re-calculation of the estimator. In Honore and Hu (2015), we propose a computationally simpler bootstrap procedure based on repeated re-calculation of one-dimensional estimators. The applicability of that approach is quite general. In this paper, we propose an alternative method which is specific to extremum estimators based on U-statistics. The contribution here is that rather than repeated re-calculating the U-statistic-based estimator, we can recalculate a related estimator based on single-sums. A simulation study suggests that the approach leads to a good approximation to the standard bootstrap, and that if this is the goal, then our approach is superior to numerical derivative methods.\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\"21 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2017-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12099\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12099\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12099","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

摘要

bootstrap是估计复杂估计量渐近方差的常用工具。具有讽刺意味的是,估计器很复杂这一事实可能会使标准bootstrap在计算上变得繁重,因为它需要重复重新计算估计器。在本文中,我们提出了一种基于U-统计量的极值估计方法。这里的贡献是,我们可以基于单个和重新计算相关的估计量,而不是重复重新计算基于U-统计的估计量。一项模拟研究表明,该方法可以很好地近似于标准bootstrap,如果这是目标,那么我们的方法优于数值导数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simpler bootstrap estimation of the asymptotic variance of U-statistic-based estimators
The bootstrap is a popular and useful tool for estimating the asymptotic variance of complicated estimators. Ironically, the fact that the estimators are complicated can make the standard bootstrap computationally burdensome because it requires repeated re-calculation of the estimator. In Honore and Hu (2015), we propose a computationally simpler bootstrap procedure based on repeated re-calculation of one-dimensional estimators. The applicability of that approach is quite general. In this paper, we propose an alternative method which is specific to extremum estimators based on U-statistics. The contribution here is that rather than repeated re-calculating the U-statistic-based estimator, we can recalculate a related estimator based on single-sums. A simulation study suggests that the approach leads to a good approximation to the standard bootstrap, and that if this is the goal, then our approach is superior to numerical derivative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
期刊最新文献
The Vector Error Correction Index Model: Representation, Estimation and Identification Double Robustness for Complier Parameters and a Semiparametric Test for Complier Characteristics Revealing priors from posteriors with an application to inflation forecasting in the UK Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1