基于Viterbi算法和似然检验的可变大小列表解码器的误差指数

Toshihiro Niinomi, Toshiyasi Matsushima, Shigeichi Hirasawa
{"title":"基于Viterbi算法和似然检验的可变大小列表解码器的误差指数","authors":"Toshihiro Niinomi,&nbsp;Toshiyasi Matsushima,&nbsp;Shigeichi Hirasawa","doi":"10.1002/ecjc.20245","DOIUrl":null,"url":null,"abstract":"<p>The likelihood ratio (LR) decision criterion [3] employed by Yamamoto and Itoh's decision feedback (ARQ) scheme [1] is known to be highly compatible with the Viterbi algorithm (VA) due to the fact that it requires a small amount of computational effort. In addition, Forney has derived an extension of the coding theorem to the variable size list decoder for maximum likelihood decoding of block codes. In this paper we propose an algorithm for extending LR-based variable size list decoding for decoding convolutional codes using the Viterbi algorithm; assuming a discrete memoryless channel we also derive a lower bound on the decoder's error exponents. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(6): 27– 36, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20245</p>","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"90 6","pages":"27-36"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ecjc.20245","citationCount":"0","resultStr":"{\"title\":\"On error exponents for a variable size list decoder using the Viterbi algorithm with likelihood testing\",\"authors\":\"Toshihiro Niinomi,&nbsp;Toshiyasi Matsushima,&nbsp;Shigeichi Hirasawa\",\"doi\":\"10.1002/ecjc.20245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The likelihood ratio (LR) decision criterion [3] employed by Yamamoto and Itoh's decision feedback (ARQ) scheme [1] is known to be highly compatible with the Viterbi algorithm (VA) due to the fact that it requires a small amount of computational effort. In addition, Forney has derived an extension of the coding theorem to the variable size list decoder for maximum likelihood decoding of block codes. In this paper we propose an algorithm for extending LR-based variable size list decoding for decoding convolutional codes using the Viterbi algorithm; assuming a discrete memoryless channel we also derive a lower bound on the decoder's error exponents. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(6): 27– 36, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20245</p>\",\"PeriodicalId\":100407,\"journal\":{\"name\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"volume\":\"90 6\",\"pages\":\"27-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ecjc.20245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecjc.20245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,Yamamoto和Itoh的决策反馈(ARQ)方案[1]所采用的似然比(LR)决策准则[3]与维特比算法(VA)高度兼容,因为它需要少量的计算工作量。此外,Forney还将编码定理推广到可变大小列表解码器,用于块码的最大似然解码。在本文中,我们提出了一种扩展基于LR的可变大小列表解码的算法,用于使用Viterbi算法解码卷积码;假设一个离散的无记忆通道,我们还导出了解码器误差指数的下界。©2007 Wiley Periodicals,股份有限公司Electron Comm Jpn Pt 3,90(6):27-362007;在线发表于Wiley InterScience(www.InterScience.Wiley.com)。DOI 10.1002/ecjc.20245
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On error exponents for a variable size list decoder using the Viterbi algorithm with likelihood testing

The likelihood ratio (LR) decision criterion [3] employed by Yamamoto and Itoh's decision feedback (ARQ) scheme [1] is known to be highly compatible with the Viterbi algorithm (VA) due to the fact that it requires a small amount of computational effort. In addition, Forney has derived an extension of the coding theorem to the variable size list decoder for maximum likelihood decoding of block codes. In this paper we propose an algorithm for extending LR-based variable size list decoding for decoding convolutional codes using the Viterbi algorithm; assuming a discrete memoryless channel we also derive a lower bound on the decoder's error exponents. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(6): 27– 36, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20245

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward systematic generation of 3COL instances based on minimal unsolvable structures Two computational algorithms for deriving phase equations: Equivalence and some cautions A data‐driven processor for alleviating bottlenecks of sequential programs and maintaining multiprocessing capability Robust and adaptive merge of multiple range images with photometric attribute Autostereoscopic visualization of volume data using computer‐generated holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1