Katherine A. Wolcott, Edward L. Stanley, Osman A. Gutierrez, Stefan Wuchty, Barbara Ann Whitlock
{"title":"应用显微计算机断层扫描和几何形态计量学的可可三维授粉生物学","authors":"Katherine A. Wolcott, Edward L. Stanley, Osman A. Gutierrez, Stefan Wuchty, Barbara Ann Whitlock","doi":"10.1002/aps3.11549","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Imaging technologies that capture three-dimensional (3D) variation in floral morphology at micro- and nano-resolutions are increasingly accessible. In herkogamous flowers, such as those of <i>Theobroma cacao</i>, structural barriers between anthers and stigmas represent bottlenecks that restrict pollinator size and access to reproductive organs. To study the unresolved pollination biology of cacao, we present a novel application of micro-computed tomography (micro-CT) using floral dimensions to quantify pollinator functional size limits.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We generated micro-CT data sets from field-collected flowers and museum specimens of potential pollinators. To compare floral variation, we used 3D Slicer to place landmarks on the surface models and performed a geometric morphometric (GMM) analysis using geomorph R. We identified the petal side door (an opening between the petal hoods and filament) as the main bottleneck for pollinator access. We compared its mean dimensions with proposed pollinators to identify viable candidates.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We identified three levels of likelihood for putative pollinators based on the number of morphological (body) dimensions that fit through the petal side door. We also found floral reward microstructures whose presence and location were previously unclear.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>Using micro-CT and GMM to study the 3D pollination biology of cacao provides new evidence for predicting unknown pollinators. Incorporating geometry and floral rewards will strengthen plant–pollinator trait matching models for cacao and other species.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D pollination biology using micro-computed tomography and geometric morphometrics in Theobroma cacao\",\"authors\":\"Katherine A. Wolcott, Edward L. Stanley, Osman A. Gutierrez, Stefan Wuchty, Barbara Ann Whitlock\",\"doi\":\"10.1002/aps3.11549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>Imaging technologies that capture three-dimensional (3D) variation in floral morphology at micro- and nano-resolutions are increasingly accessible. In herkogamous flowers, such as those of <i>Theobroma cacao</i>, structural barriers between anthers and stigmas represent bottlenecks that restrict pollinator size and access to reproductive organs. To study the unresolved pollination biology of cacao, we present a novel application of micro-computed tomography (micro-CT) using floral dimensions to quantify pollinator functional size limits.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We generated micro-CT data sets from field-collected flowers and museum specimens of potential pollinators. To compare floral variation, we used 3D Slicer to place landmarks on the surface models and performed a geometric morphometric (GMM) analysis using geomorph R. We identified the petal side door (an opening between the petal hoods and filament) as the main bottleneck for pollinator access. We compared its mean dimensions with proposed pollinators to identify viable candidates.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We identified three levels of likelihood for putative pollinators based on the number of morphological (body) dimensions that fit through the petal side door. We also found floral reward microstructures whose presence and location were previously unclear.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Discussion</h3>\\n \\n <p>Using micro-CT and GMM to study the 3D pollination biology of cacao provides new evidence for predicting unknown pollinators. Incorporating geometry and floral rewards will strengthen plant–pollinator trait matching models for cacao and other species.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11549\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11549","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
3D pollination biology using micro-computed tomography and geometric morphometrics in Theobroma cacao
Premise
Imaging technologies that capture three-dimensional (3D) variation in floral morphology at micro- and nano-resolutions are increasingly accessible. In herkogamous flowers, such as those of Theobroma cacao, structural barriers between anthers and stigmas represent bottlenecks that restrict pollinator size and access to reproductive organs. To study the unresolved pollination biology of cacao, we present a novel application of micro-computed tomography (micro-CT) using floral dimensions to quantify pollinator functional size limits.
Methods
We generated micro-CT data sets from field-collected flowers and museum specimens of potential pollinators. To compare floral variation, we used 3D Slicer to place landmarks on the surface models and performed a geometric morphometric (GMM) analysis using geomorph R. We identified the petal side door (an opening between the petal hoods and filament) as the main bottleneck for pollinator access. We compared its mean dimensions with proposed pollinators to identify viable candidates.
Results
We identified three levels of likelihood for putative pollinators based on the number of morphological (body) dimensions that fit through the petal side door. We also found floral reward microstructures whose presence and location were previously unclear.
Discussion
Using micro-CT and GMM to study the 3D pollination biology of cacao provides new evidence for predicting unknown pollinators. Incorporating geometry and floral rewards will strengthen plant–pollinator trait matching models for cacao and other species.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.